Выбор жесткого диска для компьютера. Обзор основных характеристик магнитных накопителей

Отдельного внимания заслуживает объем буфера. Зачастую HDD оснащаются кэшем 8, 16, 32 и 64 Мб. При копировании файлов больших размеров между 8 и 16 Мб будет заметна значительная разница в плане быстродействия, однако между 16 и 32 она уже менее незаметна. Если выбирать между 32 и 64, то ее вообще почти не будет. Необходимо понимать, что буфер достаточно часто испытывает большие нагрузки, и в этом случае, чем он больше, тем лучше.

В современных жестких дисках используется 32 или 64 Мб, меньше на сегодняшний день вряд ли где-то можно найти. Для обычного пользователя будет достаточно и первого, и второго значения. Тем более что помимо этого на производительность также влияет размер собственного, встроенного в систему кэша. Именно он увеличивает производительность жесткого диска, особенно при достаточном объеме оперативки.

То есть, в теории, чем больше объем, тем лучше производительность и тем больше информации может находиться в буфере и не нагружать винчестер, но на практике все немного по-другому, и обычный пользователь за исключением редких случаев не заметит особой разницы. Конечно, рекомендуется выбирать и покупать устройства с наибольшим размером, что значительно улучшит работу ПК. Однако на такое следует идти только в том случае, если позволяют финансовые возможности.

Предназначение

Она предназначена для чтения и записи данных, однако на SCSI дисках в редких случаях необходимо разрешение на кэширование записи, так как по умолчанию установлено, что кэширование записи запрещено. Как мы уже говорили, объем – не решающий фактор для улучшения эффективности работы. Для увеличения производительности винчестера более важной является организация обмена информацией с буфером. Кроме этого, на нее также в полной мере влияет функционирование управляющей электроники, предотвращение возникновения ошибок и прочее.

В буферной памяти хранятся наиболее часто используемые данные, в то время как, объем определяет вместимость этой самой хранимой информации. За счет большого размера производительность винчестера возрастает в разы, так как данные подгружаются напрямую из кэша и не требуют физического чтения.

Физическое чтение – прямое обращение системы к жесткому диску и его секторам. Данный процесс измеряется в миллисекундах и занимает достаточно большое количество времени. Вместе с этим HDD передает данные более чем в 100 раз быстрее, чем при запросе путем физического обращения к винчестеру. То есть, он позволяет устройству работать даже если хост-шина занята.

Основные преимущества

Буферная память имеет целый ряд достоинств, основным из которых является быстрая обработка данных, занимающая минимальное количество времени, в то время как физическое обращение к секторам накопителя требует определенного времени, пока головка диска отыщет требуемый участок данных и начнет их читать. Более того, винчестеры с наибольшим хранилищем, позволяют значительно разгрузить процессор компьютера. Соответственно процессор задействуется минимально.

Ее также можно назвать полноценным ускорителем, так как функция буферизации делает работу винчестера значительно эффективнее и быстрее. Но на сегодняшний день, в условиях быстрого развития технологий, она теряет свое былое значение. Это связано с тем, что большинство современных моделей имеют 32 и 64 Мб, чего с головой хватает для нормального функционирования накопителя. Как уже было сказано выше, переплачивать разницу можно лишь тогда, когда разница по стоимости соответствует разнице в эффективности.

Напоследок хотелось бы сказать, что буферная память, какой бы она не была, улучшает работу той или иной программы, или устройства только в том случае, если идет многократное обращение к одним и тем же данным, размер которых не больше размера кэша. Если ваша работа за компьютером связана с программами, активно взаимодействующими с небольшими файлами, то вам нужен HDD с наибольшим хранилищем.

Регистровая память

Не путайте с ECC памятью, хотя регистровые модули всегда используют ECC.

Регистровая память (англ. Registered Memory, RDIMM, иногда buffered memory) - вид компьютерной оперативной памяти, модули которой содержат регистр между микросхемами памяти и системным контроллером памяти. Наличие регистров уменьшает электрическую нагрузку на контроллер и позволяет устанавливать больше модулей памяти в одном канале. Регистровая память является более дорогой из-за меньшего объема производства и наличия дополнительных микросхем. Обычно используется в системах, требующих масштабируемости и отказоустойчивости в ущерб дешевизне (например - в серверах). Хотя большая часть модулей памяти для серверов является регистровой и использует ECC, существуют и модули с ECC но без регистров (UDIMM ECC), они также в большинстве случаев работоспособны и в десктопных системах. Регистровых модулей без ECC не существует.

Из-за использования регистров возникает дополнительная задержка при работе с памятью. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной, чем нерегистровая (UDIMM, unregistered DRAM). Для памяти SDRAM эта задержка существенна только для первого цикла в серии запросов (burst).

Буферизации в регистровой памяти подвергаются только сигналы управления и выставления адреса.

Буферизованная память (Buffered memory) - более старый термин для обозначения регистровой памяти.

Некоторые новые системы используют полностью буферизованную память FB-DIMM, в которой производится буферизация не только управляющих линий, но и линий данных при помощи специального контроллера AMB, расположенного на каждом модуле памяти.

Техника регистровой памяти может применяться к различным поколениям памяти, например: DDR DIMM, DDR2 DIMM, DDR3 DIMM, DDR4 DIMM

Принцип работы жесткого диска

HDD по сути является накопителем, на котором хранятся все пользовательские файлы, а также сама операционная система. Теоретически без этой детали можно обойтись, но тогда ОС придется загружать из съемного носителя или по сетевому соединению, а рабочие документы хранить на удаленном сервере.

Основа винчестера – круглая алюминиевая или стеклянная пластина. Она обладает достаточной степенью жесткости, поэтому деталь и называют жестким диском. Пластина покрыта слоем ферромагнетика (обычно это диоксид хрома), кластеры которой запоминают единицу или ноль благодаря намагничиванию и размагничиванию. На одной оси может быть несколько таких пластин. Для вращения используется небольшой высокооборотистый электромотор.

В отличие от граммофона, в котором игла касается пластинки, считывающие головки вплотную к дискам не примыкают, оставляя расстояние в несколько нанометров. Благодаря отсутствию механического контакта, срок службы такого устройства увеличивается.

Однако никакая деталь не служит вечно: со временем ферромагнетик теряет свойства, что значит, ведет к потере объема жесткого диска, обычно вместе с пользовательскими файлами.

Именно поэтому, для важных или дорогих сердцу данных (например, семейного фотоархива или плодов творчества владельца компьютера) рекомендуется делать резервную копию, а лучше сразу несколько.

Что такое кэш

Буферная память или кэш – это особая разновидность оперативной памяти, своеобразная «прослойка» между магнитным диском и компонентами ПК, которые обрабатывают хранящиеся на винчестере данные. Предназначена она для более плавного считывания информации и хранения данных, к которым на текущий момент чаще всего обращается пользователь или операционная система.

На что влияет размер кэша: чем больший объем данных в нем поместится, тем реже компьютеру приходится обращаться к жесткому диску. Соответственно, увеличивается производительность такой рабочей станции (как вы уже знаете, в плане быстродействия, магнитный диск винчестера существенно проигрывает микросхеме оперативной памяти), а также косвенно срок эксплуатации жесткого диска.

Косвенно потому, что разные пользователи эксплуатируют винчестер по разному: к примеру, у любителя фильмов, который смотрит их в онлайн-кинотеатре через браузер, теоретически хард прослужит дольше, чем у киномана, качающего фильмы торрентом и просматривающего их с помощью видеоплеера.

Догадались почему? Правильно, из-за ограниченного количества циклов перезаписи информации на HDD.

Оптимальные размеры для различных задач

Возникает закономерный вопрос: какая буферная память лучше для домашнего компьютера и что дает это в практическом плане? Естественно, желательно побольше. Однако на юзера накладывают ограничение уже сами производители винчестеров: например, хард с 128 Мб буферной памяти обойдется по цене существенно выше средней.

Именно на такой объем кэша я рекомендую ориентироваться, если вы хотите собрать игровой комп, который не устареет уже через пару лет. Для задач попроще можно обойтись и попроще характеристиками: домашнему медиацентру с головой хватит и 64 Мб. А для компьютера, который используется сугубо для серфинга в интернете и запуска офисных приложений и простеньких флеш-игр, вполне достаточно и буферной памяти объемом 32 Мб.

В качестве «золотой середины» могу порекомендовать винчестер Toshiba P300 1TB 7200rpm 64MB HDWD110UZSVA 3.5 SATA III – здесь средний размер кэша, но емкости самого жесткого диска вполне достаточно для домашнего ПК. Также для полноты картины рекомендую ознакомиться с публикациями о лучших производителях жестких дисков и рейтинге HDD, а также, какие разъемы бывают на жестких дисках.

Что делает кэш в вашем винчестере?

Теперь взглянем на принцип работы жесткого диска HDD, который хоть и вытесняется в компактных устройствах твердотельными накопителями, но, пожалуй, еще долго будет оставаться основным средством хранения информации.

Итак, внутри его расположены несколько вращающихся магнитных пластин. Считывающие головки перемещается в нужный сектор и производят запись или чтение информации. (Визуально все это напоминает проигрыватель винилов).

Как видите, механизмов в данном устройстве предостаточно, и, несмотря на сверхвысокие скорости их движения, обращение к HDD за очередной порцией данных занимает очень много (по меркам быстродействия ЦПУ) времени. Усугубляет данную ситуацию тот факт, что информация записана на поверхности дисков фрагментами, которые могут быть расположены в разных местах и на отдельных пластинах.

Так вот, чтобы системе не заниматься черновой работой складывания воедино отдельных блоков информации, данную работу было решено получить самому жесткому диску, который будет сам связывать их воедино в собственном кэше. Условно, можно обрисовать такую аналогию данного процесса: боссу понадобилась вся информация по сделке и подчиненный, дабы не носить в кабинет по отдельному документу, предварительно собирает и группирует их у себя в отделе.

Сразу добавлю, что в SSD проблема инертности считывания информации не стоит так критично. Здесь скорость данного процесса на несколько порядков выше. Но в связи с фрагментированием записи больших объемов данных оптимизация работы с ними также необходимо. Поэтому в некоторых твердотельных накопителях cache так же присутствует.

Кэш память – один из параметров HDD

Переходим непосредственно к железу с целью выяснить, что собой представляет кэш жесткого диска.

В HDD помимо механических деталей имеется управляющая плата с коннектроами. На ней и расположена специальная микросхема, представляющая собой память с высокоскоростным доступом. Это и есть кэш. Объем его относительно не велик и в обычных винчестерах может быть 32 и 64 мегабайта (в некоторых старых моделях встречаются еще значения 8 или 16 Мб). Этого вполне достаточно, чтобы сделать работу системы персонального компьютера плавной и быстрой.

Сколько лучше, спросите вы? Мне кажется, ответ очевиден, но некоторые блогеры отмечают, что существенную разницу между 32 и 64 Мб в процессе использования HDD уловить практически невозможно. Я же полагаю, что с ростом сложности программных задач это все-таки будет заметно.

И если вы рассчитываете выжать из своего ПК максимум, то стоить устанавливать на него лучшее из того, что вы сможете себе позволить. В пользу такой позиции говорит и тот факт, что на серверных жестких дисках уже используется кэш объемом в 128 и даже в 256 Мб. Думаю этот факт поможет ответить вам на вопрос: на что влияет объем буфера?

Выходит, что объем кэша винчестера имеет значение, и данный параметр обязательно стоит учитывать при выборе и покупке HDD. Как узнать эту цифру для новых и уже приобретенных устройств? Проще и надежнее всего уточнить маркировку модели и на сайте производителя найти официальную информацию. Так же объем буфера винчестера могут подсказать программы типа AIDA64.

Алгоритм работы кэш жесткого диска

Давайте разберемся, как работает буферная память винчестера. Основным потребителем, расположенной на нем информации является процессор. Дальше работает такая схема:

  • от ЦПУ поступает запрос на контроллер, который по определенным меткам идентифицирует данные и сразу проверяет их наличие в кэше жесткого диска. Если таковые имеются, обращение к HDD не производится;
    в случае отсутствия нужной информации выполняется их считывание с винчестера, причем дополнительно захватываются и близлежащие данные, которые с большой вероятностью так же могут понадобиться при последующих запросах;
  • под этот блок информации в кэш-памяти освобождается соответствующее место определенного размера. Такая процедура является непростой задачей, поскольку компьютер должен пожертвовать какими-то данными из буфера. Выбор осуществляется с помощью нескольких алгоритмов, определяющих степень «ненадобности». Для этого производится оценка по давности последнего использования информации, по частоте обращения к ней.
  • актуальные данные загружаются на свободное место. Дальше процесс взаимодействия процессора и жесткого диска снова продолжается по этому алгоритму.

И еще один момент: cache винчестера – это энергозависимая память. Поэтому перед выключением ПК система копирует информацию из кэша непосредственно на сам HDD, а после включения переносить ее обратно. При аварийном обесточивании компьютера этого не происходит.

Тут мы плавно подошли к часто задаваемому вопросу: нужно ли очищать кэш память жесткого диска? Если вы о тех 64 мегабайтах, что хранятся на чипе, то мой ответ: нет, это бессмысленно. Если вам так сильно хочется, просто вырубите комп из розетки и снова включите. Стало ли вам от этого легче? Другое дело – кэш-файлы, которые оставляют на HDD разные программы. Вот они-то со временем занимают внушительный объем и для их ликвидации можно просто воспользоваться приложением типа CCleaner.

Кэширование данных собственным чипом жесткого диска предназначено для обеспечения системы цельными блоками данных, что существенно увеличивает ее быстродействие. Но помимо отдельной платы буферизация информации также может производиться и другими, хорошо известными нам способами.

  • ОЗУ по сути так же является кэшем, по отношению к HDD. Она на несколько порядков больше, но скорость ее работы все равно проигрывает собственному модулю винчестера.
  • На жестком диске выделяется сектор для временных файлов, которые будут записаны без фрагментирования. Это называется файл подкачки (виртуальная память) и его размеры могут превышать объем RAM.

Но это уже совершенно другие устройства, требующие отдельной статьи. А по поводу самой кэш памяти жесткого диска мне уже добавить нечего и я буду с вами прощаться.

Присылайте мне свои вопросы, подсказывайте интересные темы, и я постараюсь вас снова порадовать на страницах своего блога.

До скорых встреч!

Известно, что жесткие диски оснащаются собственной буферной памятью сравнительно небольшого объема. Буфер используется как встроенная кэш-память при выполнении операций чтения и записи, позволяя оптимизировать работу и минимизировать требующие существенного времени обращения к магнитным пластинам. Например, когда в буфере имеется свободное место, контроллер может временно поместить туда данные, которые необходимо записать, и подождать удобного момента, когда нет запросов от системы (хоста). Выполняя запросы на чтение, контроллер хранит последние считанные данные на случай, если хост запросит их повторно – тогда не потребуется еще раз обращаться к диску. Контроллер часто выполняет упреждающее чтение, пытаясь спрогнозировать следующие запросы хоста, и считанные таким образом данные также помещает в буфер. Получается, что буфер используется жестким диском постоянно, и его роль очень важна.

Производители жестких дисков всегда стремились нарастить объем буферной памяти. Сегодня это сделать легче, поскольку обычные микросхемы синхронной динамической памяти (SDRAM), а в жестких дисках применяются именно они, стоят совсем недорого. В конце 90-х годов настольные винчестеры оснащались буфером 512 KB, потом большинство моделей получило 2 MB памяти, а сегодня наиболее распространены винчестеры с буфером 8 MB. Впрочем, нет предела совершенству: компания WD обновила свою массовую линейку винчестеров Caviar SE, дополнив ее моделями Caviar SE16. Основное их отличие, как вы уже догадались, заключается в увеличенном вдвое объеме буферной памяти.

Зачем нам 16 MB?

Казалось бы, чем больше объем буферной памяти, тем выше будет производительность жесткого диска. Контроллер больше данных сможет поместить в буфер, а значит, реже будет обращаться к магнитным пластинам. Впрочем, не все так просто, как кажется на первый взгляд.

Алгоритмы кэширования обычно используют метод ассоциативного поиска для определения, имеются ли требуемые данные в буфере. Чтобы увеличить объем хранимых в кэше данных, следует либо увеличить объем одного блока (строки кэша), либо увеличить количество строк. А это чревато появлением дополнительных проблем с ассоциативным поиском и обменом данными с кэшем.

Впрочем, для жесткого диска скорость кэширования не так важна, поскольку оно в любом случае ничтожно по сравнению с задержками при доступе к магнитному носителю. Другое дело, действительно ли контроллеру нужен дополнительный объем памяти. Вполне возможно, что жесткий диск не настолько загружен работой, чтобы полностью использовать весь доступный объем буфера. Например, при простом копировании и загрузке программ кэшировать ничего не нужно, так как данные считываются лишь однократно. Зато при работе в серверной среде, когда запросы поступают хаотично и непрерывно, большой буфер – существенный плюс для винчестера. Собственно, поэтому серверные винчестеры всегда оснащались буфером не менее 8 MB. Но в настольном компьютере важнее скорость чтения и доступа, чем эффективность буферизации.

(Правда, не будем забывать о технологии NCQ. C ее помощью винчестер может управлять очередью запросов, меняя порядок их обслуживания. Поскольку в этом случае характер доступа к носителю тоже меняется, дополнительная буферизация может помочь в улучшении производительности. Но увы – большинство пользователей до сих пор не знает, каким образом можно использовать NCQ, поскольку одной лишь поддержки со стороны винчестера тут недостаточно).

Получается, что большой объем буфера вряд ли окажет существенное влияние на общую скорость. Поставить микросхему более высокой емкости недостаточно для улучшения быстродействия. Разработчикам следует не только переработать микрокод, но и улучшить скорость чтения/записи носителя и пропускную способность интерфейса.

Caviar SE16. Особенности конструкции

Нам удалось сопоставить модель WD2500KS, входящую в линейку Caviar SE16, с моделью WD2000JS из "стандартной" линейки Caviar SE. Как оказалось, у них минимум отличий: маркировки гермоблока, разъемов, платы электроники совпадают. Даже версия микрокода одна и та же. Следовательно, разработчики из WD использовали прежнюю технологию, просто заменив одну микросхему памяти на другую.

Для тех, кто не в курсе особенностей жестких дисков WD, сообщим следующее. Этот производитель применяет только проверенные технологии и особенно заботится о защите дисков от повреждений. Конструкция гермоблока стандартная: массивный корпус и плоская верхняя крышка герметично соединены, на крышке сверху имеется вентиляционное отверстие. Но плата электроники по традиции перевернута микросхемами внутрь и прижата к корпусу, имеется термопроводящая прокладка. Подобный прием позволяет защитить микросхемы от перегрева и внешних воздействий. Разъемов питания два – стандартный 4-контактный и новый плоский, в соответствии с требованиями Serial ATA. Для защиты интерфейсного разъема Serial ATA от случайного отключения WD предлагает использовать специальный кабель SecureConnect, имеющий защелки.

Серия Caviar SE16 выпускается только с поддержкой интерфейса Serial ATA. Причем контроллер жесткого диска поддерживает "вторую скорость" 3 GB/s (300 MB/s). Другие технологии, в частности, NCQ, пока не реализованы – тут WD отстает от других производителей.

Заявленные параметры жестких дисков WD Caviar SE/SE16

Маркировка

Скорость вращения шпинделя, об/мин

Плотность записи, GB на пластину

Объем кэш-буфера, MB

Подшипники

Интерфейс

Поддержка NCQ

Диапазон емкостей

120, 160, 200, 250

Внутр. скорость обмена данными, Mbit/s

Средняя скорость доступа: средняя, мс

- по максимальному радиусу, мс

- переход между дорожками, мс

- скорость доступа при записи, мс

Устойчивость к удару (offline), G

Устойчивость к удару (online), G

Уровень шума при простое, дБ

Уровень шума при позиционировании, дБ

Диапазон емкостей винчестеров Caviar SE16 пока невелик. На сайте WD удалось найти данные по модели 250 GB, плюс недавно появилась модель 400 GB. Точную плотность записи и емкость одной пластины производитель не сообщает, но, по имеющимся данным, в нынешней серии винчестеров применяются пластины по 100 GB. На сегодня это скромный результат, однако WD практикует модернизацию линейки без смены названий и спецификаций, поэтому вполне может оказаться, что в продаже уже имеются диски с более емкими пластинами.

Тестирование

В тестировании принимали участие жесткие диски трех производителей – WD, Seagate и Samsung. На момент написания статьи именно их продукция была представлена в широком ассортименте. Экземпляр рассматриваемого в обзоре жесткого диска серии Caviar SE16 имел следующие параметры:

  • маркировка WD2500KS-00MJB0;
  • объем 250 GB;
  • версия микрокода 02.01C03;
  • режим "тихого позиционирования" (AAM) отключен (0FEh).

Мы будем сравнивать с ним следующие жесткие диски:

  • Caviar SE, из линейки с буфером 8 MB, объем 200 GB:
    • маркировка: WD2000JS-00MHB0;
    • объем буфера – 8 MB;
    • интерфейс – Serial ATA 3 Gbit/s, NCQ не поддерживается;
    • версия микрокода – 02.01C03 (та же самая);
    • режим "тихого" позиционирования (AAM) отключен (0FEh).
  • Samsung SpinPoint P120, 200 GB:
    • маркировка SP2004C;
    • объем буфера – 8 MB;
    • интерфейс – Serial ATA 3 Gbit/s, NCQ поддерживается;
    • версия микрокода – VM100-33;
    • режим "тихого" позиционирования включен (код 00h).
  • Seagate Barracuda 7200.8, 200 GB:
    • маркировка ST3200826AS;
    • объем буфера – 8 MB;
    • интерфейс – Serial ATA 1.5 Gbit/s, NCQ поддерживается;
    • версия микрокода – 3.03;
    • режим "тихого" позиционирования заблокирован (управление недоступно).

Жесткие диски Seagate и Samsung имеют более высокую плотность записи, чем WD Caviar. К тому же Seagate имеет более высокую заявленную скорость позиционирования (8 мс против 8.9 мс у Samsung и WD), а Samsung работает тише. То есть WD формально не имеют преимуществ по сравнению с дисками других производителей. Но на практике может быть все наоборот.

Жесткие диски подключались ко второму порту контроллера Serial ATA, встроенного в южный хаб ICH5 чипсета Intel 865G. К сожалению, чипсеты серии 865 не поддерживают скорость 3 Гбит/с и технологию NCQ, поэтому возможности современных винчестеров полностью раскрыть не позволяет. Другие параметры тестовой конфигурации:

  • хост-винчестер, с которого выполнялась загрузка ОС и запуск тестов – Seagate Barracuda 7200.7 PATA 80 GB;
  • процессор Intel Pentium 4 2.80 (шина 800 МГц);
  • материнская плата Intel D865GBF (Intel 865G);
  • память 2 x 256 DDR400, включен двухканальный режим работы;
  • видеокарта GeForce FX 5600;
  • винчестеры устанавливались в 2.5-дюймовую корзину корпуса Inwin J551, специальное охлаждение не применялось.

Низкоуровневые тесты

Использование программ, работающих с диском напрямую, позволяет измерить теоретические параметры винчестера – скорость случайного доступа, усредненную (sustained) скорость чтения и записи, эффективность отложенной записи. При этом влияние алгоритмов кэширования минимально, так как доступ осуществляется непрерывно и по простой схеме.

Низкоуровневые параметры рассчитывались с помощью программ:

  • IOMeter 2004.07.30;
  • HDTach 2.68;
  • HDTach 3.0.1.0;
  • Winbench 2.0 (диск форматировался под один большой раздел NTFS).

Скорость доступа оказалась выше у Caviar, поскольку винчестеры WD не используют алгоритмы замедления позиционирования (AAM). Seagate, несмотря на отличные заявленные цифры, оказался последним. Как ни странно, Caviar SE16 немного (0.3 мс) уступил своему собрату, что можно объяснить либо естественной разбежкой технологических параметров (все же механика имеет некоторые отклонения в ту или иную сторону), либо влиянием третьей пластины (чем больше число головок, тем больше будет задержка на их переключение). Конечно, отличия на самом деле очень небольшие, и говорить о серьезном отставании Caviar SE16 мы не будем. По скорости доступа при записи винчестеры WD сравнялись, обеспечив двукратное ускорение по сравнению со скоростью доступа при чтении. Объясняется это влиянием алгоритма отложенной записи.

По скорости последовательного чтения/записи Caviar SE16, наоборот, слегка опередил Caviar SE. Но их обогнал винчестер Seagate (+10%), что закономерно ввиду применения более высокой плотности записи, а Samsung, наоборот, настолько же отстал.

Более точный анализ скорости чтения/записи позволяет провести IOMeter. Если другие программы работают с блоками 64 KB, IOMeter может варьировать размер блока.

По чтению лидирует Seagate: он существенно лучше (+20%) справляется с мелкими и крупными блоками. Samsung, как оказалось, с мелкими блоками работает совсем плохо. А WD отлично показали себя в тестах записи, обойдя Seagate при работе с блоками менее 64 KB.

Программа Winbench’99, несмотря на свой почтенный возраст, довольно точно строит график последовательно чтения.

Оба диска WD имеют одинаковую форму графика, с отсутствием пиков и провалов, что свидетельствует о высокой стабильности чтения. График Caviar SE16 более вытянут, что связано с большей его емкостью. Увеличение масштаба графика позволяет рассмотреть кратковременные, но сильные провалы скорости у Seagate и Samsung (работа алгоритмов исправления ошибок ECC, задержки на переключения головок и смену дорожек) и отсутствие таковых у WD. И пусть плотность записи у WD хуже, проверенная технология производства имеет свои плюсы – выше стабильность работы.

Имитация работы приложений

Шаблон Workstation теста IOMeter позволяет генерировать нагрузку на дисковую подсистему, близкую к реальной (сбор статистики проводился по тесту Winstone 2002 Content Creation). Так вот, этот тест более чувствителен к скорости доступа, чем к скорости чтения/записи, плюс он учитывает работу алгоритмов кэширования, так как запросы поступают с нарастанием глубины очереди.

Согласно полученным данным, оба диска WD слегка опередили Samsung и буквально разгромили Seagate. Caviar SE опять чуть лучше Caviar SE16, так как у них есть небольшая разница по скорости доступа.

На тест PCMark05 мы возлагали большую надежду, так как именно он должен показать преимущество большого кэш-буфера. Этот тест использует шаблоны, записанные с помощью тестового пакета Intel IPEAK SPT при выполнении определенных задач. Следовательно, PCMark05 может более-менее правдоподобно смоделировать работу винчестера в реальных условиях.

Так вот, если по скорости загрузки Windows XP, копирования файлов и сканирования на вирусы винчестеры WD почти не отличаются, то по скорости загрузки приложений и доступу к данным во время работы приложений Caviar SE16 на 10-15% быстрее Caviar SE, не говоря уже о Samsung и Seagate.

Преимущество винчестера с большим буфером заметно и в тесте Winstone, особенно если используется файловая система FAT32.

Выводы

Результаты тестирования доказывают: положительный эффект от увеличения буфера есть. Он небольшой, в пределах 10-15%, и проявляется только при работе винчестера в условиях, близких к реальным. В низкоуровневых тестах разницы практически нет, что согласуется с теорией. Та же теория говорит о том, что с ростом пропускной способности интерфейса и плотности записи, а также с внедрением технологий оптимизации доступа к диску объем буфера придется увеличивать. Поэтому разработчики из WD немного поспешили; впрочем, лучше заняться отработкой технологии сейчас, чем впоследствии догонять конкурентов.

Если вы хотите узнать, что такое кэш-память жесткого диска и как она работает, эта статья для вас. Вы узнаете, что это такое, какие функции он выполняет и как влияет на работу устройства, а также о достоинствах и недостатках кэша.

Понятие кэш-памяти жесткого диска

Жесткий диск сам по себе - довольно неторопливое устройство. По сравнению с оперативной памятью, жесткий диск работает на несколько порядков медленнее. Этим же обуславливается падение производительности компьютера при нехватке оперативной памяти, так как недостача компенсируется жестким диском.

Итак, кэш-память жесткого диска — это своеобразная оперативная память. Она встроена в винчестер и служит буфером для считанной информации и последующей передачи его в систему, а также содержит наиболее часто используемые данные.

Рассмотрим, для чего нужна кэш-память жесткого диска.

Как было отмечено выше, чтение информации с жесткого диска происходит весьма неторопливо, так как движение головки и нахождение необходимого сектора занимает много времени.

Необходимо уточнить, что под словом "медленно" имеются в виду миллисекунды. А для современных технологий миллисекунда - это очень много.

Поэтому, как и кэш жесткого диска хранит в себе данные, физически прочитанные с поверхности диска, а также считывает и хранит в себе секторы, которые вероятно будет запрошены позднее.

Таким образом уменьшается количество физических обращений к накопителю, при этом увеличивается производительность. Винчестер может работать, даже если хост-шина не свободна. Скорость передачи может увеличиваться в сотни раз при однотипных запросах.

Как работает кэш-память жесткого диска

На этом остановимся подробнее. Вы уже примерно представляете, для чего предназначена кэш-память жесткого диска. Теперь выясним, как она работает.

Представим себе, что жесткому диску приходит запрос на считывание информации в 512 КБ с одного блока. С диска берется и передается в кэш нужная информация, но вместе с запрашиваемыми данными заодно считывается несколько соседних блоков. Это называется предвыборкой. Когда поступает новый запрос на диск, то микроконтроллер накопителя сначала проверяет наличие этой информации в кэше и если он находит их, то мгновенно передает системе, не обращаясь к физической поверхности.

Так как память кэша ограничена, то самые старые блоки информации заменяются новыми. Это круговой кэш или цикличный буфер.

Методы повышения скорости работы жесткого диска за счет буферной памяти

  • Адаптивная сегментация. Кэш-память состоит из сегментов с одинаковыми объемами памяти. Так как размеры запрашиваемой информации не могут постоянно быть одинакового размера, то многие сегменты кэша будут использоваться нерационально. Поэтому производители начали делать кэш-память с возможностью замены размеров сегментов и их количества.
  • Предвыборка. Процессор винчестера анализирует запрошенные ранее и запрашиваемые на текущий момент данные. На основе анализа он переносит с физической поверхности информацию, которая с большей долей вероятности будет запрошена в следующий момент времени.
  • Контроль пользователя. Более продвинутые модели жестких дисков дают возможность пользователю контролировать выполняемые операции в кэше. Например: отключение кэша, установление размера сегментов, переключение функции адаптивной сегментации или отключение предвыборки.

Что дает устройству больший объем памяти кэша

Теперь узнаем какими объемами оснащают и что дает кэш-память в жестком диске.

Чаще всего можно встретить винчестеры с объемом кэша в 32 и 64 МБ. Но остались еще и на 8 и 16 МБ. В последнее время стали выпускаться лишь на 32 и 64 МБ. Значительный прорыв в быстродействии произошел, когда вместо 8 МБ стали использовать 16 МБ. А между кэшами объемом в 16 и 32 МБ особой разницы уже не чувствуется, как и между 32 и 64.

Среднестатистический пользователь компьютера не заметит разницы в производительности винчестеров с кэшем в 32 и 64 МБ. Но стоит отметить, что кэш-память периодически испытывает значительные нагрузки, поэтому лучше приобретать винчестер с более высоким объемом кэша, если есть финансовая возможность.

Основные достоинства кэш-памяти

Кэш-память имеет много достоинств. Мы рассмотрим лишь основные из них:


Недостатки кэш-памяти

  1. Не увеличивается скорость работы винчестера, если данные записаны на дисках случайным образом. Это делает невозможным предвыборку информации. Такой проблемы можно частично избежать, если периодически проводить дефрагментацию.
  2. Буфер бесполезен при чтении файлов, объемом большим, чем может поместиться в кэш-память. Так, при обращении к файлу размером в 100 МБ, кэш в 64 МБ будет бесполезен.

Дополнительная информация

Вы теперь знаете, жесткого диска и на что влияет. Что еще необходимо знать? В настоящее время существует новый тип накопителей - SSD (твердотельные). В них вместо дисковых пластин используется синхронная память, как во флешках. Такие накопители в десятки раз быстрее обычных винчестеров, потому наличие кэша бесполезно. Но и такие накопители имеют свои недостатки. Во-первых, цена таких устройств увеличивается пропорционально объему. Во-вторых, они имеют ограниченный запас цикла перезаписи ячеек памяти.

Еще существуют гибридные накопители: твердотельный накопитель с обычным жестким диском. Преимуществом является соотношение высокой скорости работы и большим объемом хранимой информации с относительно низкой стоимостью.

Сегодня распространенным накопителем информации является магнитный жесткий диск. Он обладает определенным объемом памяти, предназначенным для хранения основных данных. Также в нем имеется буферная память, предназначение которой заключается в хранении промежуточных данных. Профессионалы называют буфер жесткого диска термином «cache memory» или же просто «кэшем». Давайте разберемся, зачем нужен буфер HDD на что влияет и каким обладает размером.

Буфер жесткого диска помогает операционной системе временно хранить данные, которые были считаны с основной памяти винчестера, но не были переданы на обработку. Необходимость наличия транзитного хранилища обусловлена тем, что скорость считывания информации с HDD накопителя и пропускная способность ОС значительно различается. Поэтому компьютеру требуется временно сохранять данные в «кэше», а только затем использовать их по назначению.

Непосредственно сам буфер жесткого диска представляет собой не отдельные сектора, как полагают некомпетентные компьютерные пользователи. Он является специальными микросхемами памяти, располагающимися на внутренней плате HDD. Такие микросхемы способны работать намного быстрее самого накопителя. Вследствие чего обуславливают увеличение (на несколько процентов) производительности компьютера, наблюдающееся во время эксплуатации.

Стоит отметить, что размер «cache memory» зависит от конкретной модели диска. Раньше он составлял около 8 мегабайт, причем такой показатель считался удовлетворительным. Однако с развитием технологий производители смогли выпускать микросхемы с более большим объемом памяти. Поэтому большинство современных винчестеров обладают буфером, размер которого варьируется от 32 до 128 мегабайт. Конечно, наибольший «кэш» устанавливается в дорогие модели.

Какое влияние оказывает буфер жесткого диска на производительность

Теперь расскажем, почему размер буфера винчестера оказывает влияние на производительность компьютера. Теоретически, чем больше информации будет находиться в «cache memory», тем реже операционная система будет обращаться к винчестеру. Особенно это актуально для сценария работы, когда потенциальный пользователь занимается обработкой большого количества маленьких файлов. Они попросту перемещаются в буфер жесткого диска и там ждут своей очереди.

Однако если ПК используется для обработки файлов большого размера, то «кэш» утрачивает свою актуальность. Ведь информация не сможет поместиться на микросхемах, объем которых невелик. В результате пользователь не заметит увеличения производительности компьютера, поскольку буфер практически не будет использоваться. Это происходит в случаях, если в операционной системе будут запускаться программы для редактирования видеофайлов и т. д.

Таким образом, при приобретении нового винчестера рекомендуется обращать внимание на размер «кэша» только в случаях, если планируется постоянно заниматься обработкой небольших файлов. Тогда получится действительно заметить увеличение производительности своего персонального компьютера. А если же ПК будет использоваться для обыкновенных повседневных задач или обработки файлов большого размера, тогда можно не придавать буферу обмена никакого значения.

Влияние буфера на производительность жесткого диска

Владимир Леонов

Современные серии жестких дисков всех производителей можно разделить на две категории, различающиеся размером внутреннего буфера (2 или 8 Мбайт). Просмотр прайс-листов показал, что разница в цене дисков одного объема с разным размером буфера в Москве сейчас колеблется от 3 до 19 долл. и зависит от производителя и продавца. В этой статье мы попробуем показать влияние размера внутреннего буфера на производительность жесткого диска.

равнение производительности мы проведем на примере жестких дисков HDS722516VLAT20 и HDS722516VLAT80 из семейства Deskstar 7K250 компании Hitachi. Если быть более точным, то с прошлого года выпуском жестких дисков в компании Hitachi занимается новое подразделение HGST (Hitachi Global Storage Technologies), образованное в результате объединения собственного дискового производства и мощностей, приобретенных у компании IBM. Оба диска имеют объем 160 Гбайт и полностью повторяют друг друга по конструкции механической части. Тестировавшиеся диски имели одинаковую версию прошивки - V340A60A и отличались только размером внутреннего буфера (2 и 8 Мбайт соответственно).

Сравнение производительности мы проводили под управлением операционной системы Windows XP Professional.SP1 на компьютере следующей конфигурации:

Материнская плата — MSI 875P Neo (MS-6758);

Процессор — Intel Pentium 4 3,06 ГГц (533 FSB);

Память — 1 Гбайт (2Ѕ512 Мбайт Kingston PC2700 DDR SDRAM);

Жесткий диск — Hitachi Deskstar IC35L090AVV207-0.

Тестируемые диски поочередно подключались как Secondary Master.

Для сравнения производительности мы взяли тесты, имитирующие работу дисковой подсистемы в реальных условиях и различающиеся способом оценки производительности:

Ziff Davis WinBench 99 v. 2.0;

Futuremark PCMark2004;

FileCopy Test v. 0.5.3 (разработан компанией «Ф-Центр»).

В тесте Ziff Davis WinBench 99 v. 2.0 определяется производительность дисковой подсистемы при работе реальных приложений. Это хороший тест, но, к сожалению, он уже не поддерживается разработчиком и версии приложений, используемые в тесте, сильно устарели. Кроме производительности в тесте определяются среднее время доступа к диску и график зависимости скорости чтения от места расположения данных на диске (рис. 1 и 2).

Как и следовало ожидать, диски имеют одинаковое время доступа (табл. 1) и графики зависимости скорости чтения от места расположения данных на диске для обоих дисков совпадают. По производительности во всех подтестах впереди жесткий диск HDS722516VLAT80, и можно сказать, что это преимущество полностью определяется работой буфера. Как видно из табл. 1, при использовании файловой системы FAT-32 влияние буфера обычно более заметно.

Набор тестов PCMark04 от компании Futuremark основан на реальных приложениях и предназначен для детального исследования производительности компьютера. Пакет состоит из нескольких разделов, один из которых предназначен для определения производительности дисковой подсистемы. Для тестирования дисковой подсистемы применяются так называемые трассы - заранее записанные на некотором эталонном компьютере последовательности дисковой активности при выполнении различных задач. Показателем быстродействия служит скорость обработки трассы, измеренная в мегабайтах в секунду. Используются четыре трассы, воспроизводящие работу жесткого диска при выполнении различных задач. Назначение трасс понятно из их названия. Это загрузка операционной системы, открытие и закрытие нескольких популярных приложений, копирование файлов и имитация работы пользователя. Результаты приведены в табл. 2. Как и в предыдущем тесте, впереди жесткий диск HDS722516VLAT80. Наиболее сильно влияние увеличенного буфера сказывается на операциях копирования и меньше всего - на загрузке операционной системы.

Утилита FileCopy Test v. 0.5.3 разработана специалистами компании «Ф-Центр» и предназначена для определения производительности жесткого диска при создании (записи) файлов на диске, чтении файлов с диска и копировании файлов с одного участка диска на другой. В качестве результатов показываются время выполнения операции и скорость, измеряемая в мегабайтах в секунду (Мбайт/с). При создании файлов используются заранее подготовленные паттерны - списки, содержащие информацию о длине и количестве файлов, которые необходимо создать. Паттерн можно создать либо вручную, либо автоматически по любой папке, воспользовавшись опцией Scan, что позволяет легко создать паттерн с реальным распределением файлов по размерам. Мы использовали паттерны, входящие в комплект дистрибутива программы. По названию паттернов легко догадаться об их содержании. Результаты теста приведены в табл. 3. Из таблицы видно, что степень влияния размера буфера на производительность жесткого диска зависит от выполняемой операции и среднего размера обрабатываемого файла. Так, при раздельном выполнении операций записи и чтения файлов большой длины (паттерн ISO) размер буфера почти не влияет на производительность, а при копировании таких файлов влияние размера буфера проявляется наиболее сильно.

Из вышеприведенных результатов видно, что увеличение размера буфера дает значительный прирост производительности при выполнении большинства операций. Только при записи и чтении файлов большой длины, то есть в режиме, когда диск фактически работает в режиме последовательного чтения/записи, размер буфера не оказал влияния на производительность.

Возможно, на жестких дисках других производителей и даже на тестировавшихся жестких дисках с другой версией прошивки влияние размера буфера будет сказываться немного по-другому, но вряд ли различие будет значительным. На наш взгляд, установка в компьютер жесткого диска с увеличенным буфером является более выгодной в плане эффективности вложения средств.