Что возможность некоторых алгоритмов шифрования. Алгоритмы шифрования данных

Обычно, новые алгоритмы шифрования публикуются для всеобщего ознакомления и изучаются в специализированных научных центрах. Результаты таких изучений тоже публикуются для всеобщего ознакомления.

Симметричные алгоритмы
Алгоритмы шифрования делятся на два больших класса: симметричные (AES, ГОСТ, Blowfish, CAST, DES) и асимметричные (RSA, El-Gamal). Симметричные алгоритмы шифрования используют один и тот же ключ для зашифровывания информации и для ее расшифровывания, а асимметричные алгоритмы используют два ключа - один для зашифровывания, другой для расшифровывания.

Если зашифрованную информацию необходимо передавать в другое место, то в этом надо передавать и ключ для расшифрования. Слабое место здесь - это канал передачи данных - если он не защищенный или его прослушивают, то ключ для расшифрования может попасть к злоумышленику. Системы на ассиметричных алгоритмах лишены этого недостатка. Поскольку каждый участник такой системы обладает парой ключей: Открытым и Секретным Ключом.

Ключ шифрования
Это случайная или специальным образом созданная по паролю последовательность бит, являющаяся переменным параметром алгоритма шифрования.
Если зашифровать одни и те же данные одним алгоритмом, но разными ключами, результаты получатся тоже разные.

Обычно в Программах для шифрования (WinRAR, Rohos и т.д.) ключ создается из пароля, который задает пользователь.

Ключ шифрования бывает разной длины, которая, как правило, измеряется в битах. С увеличением длины ключа повышается теоритическая стойкость шифра. На практике это не всегда верно.

В криптографии считается, что механизм шифрования - это несекретная величина, и злоумышленник может иметь полный исходный код алгоритма шифрования, а также зашифрованный текст (правило Керкхоффа). Еще одно допущение, которое может иметь место - злоумышленник может знать часть незашифрованного (открытого) текста.

Стойкость алгоритма шифрования.
Алгоритм шифрования считается стойким до тех пор, пока не будет доказано обратное. Таким образом, если алгоритм шифрования опубликован, существует более 5 лет, и для него не найдено серьезных уязвимостей, можно считать, что его стойкость подходит для задач защиты секретной информации.

Теоретическая и практическая стойкость.
В 1949 г. К.Э. Шеннон опубликовал статью "Теория связи в секретных системах". Шеннон рассматривал стойкость криптографических систем как Практическую и Теоритическую. Вывод по теоритической стойкости до сих пор остается пессимистическим: длина ключа должна быть равна длине открытого текста.
Поэтому Шеннон также рассмотрел вопрос и по практической стойкости криптографических систем. Надежна ли система, если злоумышленник обладает ограниченным временем и вычислительными ресурсами для анализа перехваченных сообщений?

Обычно уязвимости находят в программах, которые шифруют данные по какому-либо алгоритму. В этом случае, программисты допускают ошибку в логике программы или в криптографическом протоколе, благодaря чему, изучив, как работает программа (на низком уровне), можно в итоге получить доступ к секретной информации.

Взлом алгоритма шифрования
Считается, что криптосистема раскрыта, если злоумышленник сможет вычислить секретный ключ, а также выполнить алгоритм преобразования, эквивалентный исходному криптоалгоритму. И чтобы этот алгоритм был выполним за реальное время.

В криптологии есть подраздел - криптоанализ, который изучает вопросы взлома или подделывания зашифрованных сообщений. Существует много способов и методов криптоанализа. Самый популярный - это метод прямого перебора всех возможных значений ключа шифрования (так называемым методом "грубой силы" или brute force). Суть данного метода состоит в переборе всех возможных значений ключа шифрования до тех пор, пока не будет подобран нужный ключ.

На практике это означает, что злоумышленник должен:

  • Иметь в распоряжении криптосистему (т.е. программу) и примеры зашифрованных сообщений.
  • Разобраться в криптографическом протоколе. Иначе говоря, как программа шифрует данные.
  • Разработать и реализовать алгоритм перебора Ключей для этой криптосистемы.
Как определить, что ключ верный или нет?
Все зависит от конкретной программы и реализации протокола шифрования. Обычно, если после расшифрования получился "мусор", то это неверный Ключ. А если более менее осмысленный текст (это можно проверить), то значит, Ключ верный.

Алгоритмы шифрования
AES (Rijndael) . В настоящее время является федеральным стандартом шифрования США. Утвержден министерством торговли в качестве стандарта 4 декабря 2001 года. Решение вступило в силу с момента опубликования в федеральном реестре (06.12.01). В качестве стандарта принят вариант шифра только с размером блока 128 бит.

ГОСТ 28147-8. Стандарт Российской Федерации на шифрование и имитозащиту данных. Первоначально имел гриф (ОВ или СС - точно не известно), затем гриф последовательно снижался, и к моменту официального проведения алгоритма через Госстандарт СССР в 1989 году был снят. Алгоритм остался ДСП (как известно, ДСП не считается грифом). В 1989 году стал официальным стандартом СССР, а позже, после распада СССР, федеральным стандартом Российской Федерации.

Blowfish Сложная схема выработки ключевых элементов существенно затрудняет атаку на алгоритм методом перебора, однако делает его непригодным для использования в системах, где ключ часто меняется, и на каждом ключе шифруется небольшие по объему данные. Алгоритм лучше всего подходит для систем, в которых на одном и том же ключе шифруются большие массивы данных.

DES Федеральный стандарт шифрования США в 1977-2001 годах. В качестве федерального стандарта США принят в 1977 году. В декабре 2001 года утратил свой статус в связи с введением в действие нового стандарта.

CAST В некотором смысле аналог DES.

Алгоритмы шифрования используются для изменения конфиденциальной информации до такого вида, чтобы она не была понятна для прочтения посторонними лицами.

Первые шифры использовались еще во времена Древнего Рима, Древнего Египта и Древней Греции. Одним из известных шифров является шифр Цезаря . Данный алгоритм работал следующим образом: каждая буква имеет свой порядковый номер в алфавите, который сдвигался на $3$ значения влево. Сегодня подобный алгоритм не обеспечивает ту защиту, которую давал во времена его использования.

Сегодня разработано большое количество алгоритмов шифрования, в том числе стандартных, которые обеспечивают надежную защиту конфиденциальной информации.

Разделяют алгоритмы шифрования на симметричные (к ним относятся AES, CAST, ГОСТ, DES, Blowfish) и асимметричные (RSA, El-Gamal).

Симметричные алгоритмы

Замечание 1

Симметричными алгоритмами шифрования используется один и тот же ключ для шифрования и дешифрования информации.

При передаче зашифрованной информации необходимо передавать и ключ для дешифрования. Слабым местом такого способа является канал передачи данных. В случае его незащищенности или возможности прослушивания ключ для дешифрования может стать доступным злоумышленнику.

Асимметричные алгоритмы

Замечание 2

Асимметричными алгоритмами используется два ключа – один для шифрования, другой – для дешифрования.

Каждый пользователь должен обладать парой ключей – открытым и секретным ключом.

Ключ шифрования

Определение 1

Ключ шифрования представляет собой случайную или специальным образом созданную последовательность бит, которая является переменным параметром алгоритма шифрования.

При шифровании одних и тех же данных одним алгоритмом, но с использованием разных ключей, результаты получаются разные.

Программы для шифрования (WinRAR, Rohos и т.д.) создают ключ из пароля, задаваемого пользователем.

Ключ шифрования может быть разной длины, измеряемой в битах. При увеличении длины ключа повышается теоретическая стойкость шифра. Практически это не всегда так.

Стойкость алгоритма шифрования

Замечание 3

Алгоритм шифрования считается стойким до тех пор, пока не доказано обратное.

Алгоритмы шифрования

Алгоритм AES (Rijndael) на данный момент является федеральным стандартом шифрования США. В качестве стандарта утвержден Министерством торговли в $2001$ г. Стандартом считается вариант шифра с размером блока $128$ бит. Разработан в $1997$ г. в Бельгии. Возможными размерами ключа являются ключи $128, 192$ и $256$ бит.

Алгоритм ГОСТ 28147-8 является стандартом Российской Федерации на шифрование и имитозащиту данных. Официальным стандартом стал в $1989$ г. Разработан в $1970$-х гг. в Главном Управлении КГБ СССР. Использует ключ размером $256$ бит.

Алгоритм Blowfish использует сложную схему создания ключей, что существенно затрудняет атаку на алгоритм методом перебора. Непригоден для использования в системах частого изменения ключа и при шифровании небольших по объему данных. Алгоритм лучше всего использовать для систем, в которых существует необходимость шифрования больших массивов данных. Разработан в $1993$ г. Используется размер ключа от $32$ до $448$ бит.

Алгоритм DES являлся Федеральным стандартом шифрования США в $1977-2001$ годах. Федеральным стандартом принят в $1977$ г. после введения в действие нового стандарта в $2001$ г. утратил статус стандарта. Разработан в $1972–1975$ гг. исследовательской лабораторией корпорации IBM. Использует ключ размером $56$ бит.

Алгоритм CAST является некоторым образом аналогом алгоритма DES. Использует ключи размером $128$ и $256$ бит.

Государственным стандартом шифрования в России является алгоритм, зарегистрированный как ГОСТ 28147-89. Он является блочным шифром, то есть шифрует не отдельные символы, а 64-битные блоки. В алгоритме предусмотрено 32 цикла преобразования данных с 256-битным ключом, за счет этого он очень надежен (обладает высокой криптостойкостью). На современных компьютерах раскрытие этого шифра путем перебора ключей (“методом грубой силы”) займет не менее сотен лет, что делает такую атаку бес­смысленной. В США используется аналогичный блочный шифр AES .

В Интернете популярен алгоритм RSA, названный так по начальным буквам фамилий его авторов - Р.Райвеста (R.Rivest), А.Шамира (A.Shamir) и ЛАдлемана (L.Adleman). Это алгоритм с открытым ключом, стойкость которого основана на использовании свойств простых чисел. Для его взлома нужно разложить очень большое число на простые сомножители. Эту задачу сейчас умеют решать только перебором вариантов. Поскольку количество вариантов огромно, для раскрытия шифра требуется много лет работы со­временных компьютеров.

Для применения алгоритма RSA требуется построить открытый и секретный ключи следующим образом.

1. Выбрать два больших простых числа, р и q.
2. Найти их произведение n = p * q и значение f = (р - 1) (q - 1)
3. Выбрать число e (1 < e < k), которое не имеет общих делителей с f.
4. Найти число d, которое удовлетворяет условию d e = k f + 1 для некоторого целого k
5. Пара значений (e, n) - это открытый ключ RSA (его можно свободно публиковать), а пара (d, n) - это секретный ключ .

Передаваемое сообщение нужно сначала представить в виде последовательности чисел в интервале от 0 до n - 1. Для шифрования используют формулу y = х e mod n, где х - число исходного сообщения, (e, n) - открытый ключ, y - число закодированного сообщения, а запись х e mod n обозначает остаток от деления х на n. Расшифровка сообщения выполняется по формуле х = y d mod n.
Это значит, что зашифровать сообщение может каждый (открытый ключ общеизвестен), а прочитать его - только тот, кто знает секретный показатель степени d.
Для лучшего понимания мы покажем работу алгоритма RSA на простом примере.
ПРИМЕР: Возьмем р = 3 и q = 7, тогда находим n = р q = 21 и f = (р - 1) (q - 1) = 12. Выберем e = 5, тогда равенство d e = к f + 1 выполняется, например, при d = 17 (и к = 7). Таким образом, мы получили открытый ключ (5, 21) и секретный ключ (17, 21).

Зашифруем сообщение “123” с помощью открытого ключа (5,21). Получаем

1 1 5 mod 21 = 1 ,
2 2 5 mod 21 = 11 ,

3 → 3 5 mod 21 = 12,
то есть зашифрованное сообщение состоит из чисел 1 ,11и 12. Зная секретный ключ (17, 21), можно его расшифровать:

1 → 1 17 mod 21 = 1 ,

11 → 11 17 mod 21 = 2 ,
12 → 12 17 mod 21 = 3 .

Мы получили исходное сообщение.

Конечно, вы заметили, что при шифровании и расшифровке приходится вычислять остаток от деления очень больших чисел (например, 12 17) на n. Оказывается, само число 12 17 в этом случае находить не нужно. Достаточно записать в обычную целочисленную пере­менную, например х, единицу, а потом 17 раз выпол­нить преобразование х = 12*х mod 21. После этого в переменной х будет значение 12 17 mod 21 = 3. Попро­буйте доказать правильность этого алгоритма.
Для того чтобы расшифровать сообщение, нужно знать секретный показатель степени d. А для этого, в свою очередь, нужно найти сомножители р и q, такие что n = р q. Если n велико, это очень сложная задача, ее решение перебором вариантов на современном ком­пьютере займет сотни лет. В 2009 году группа ученых из разных стран в результате многомесячных расчетов на сотнях компьютеров смогла расшифровать сообще­ние, зашифрованное алгоритмом RSA с 768-битным ключом. Поэтому сейчас надежными считаются ключи с длиной 1024 бита и более. Если будет построен рабо­тающий квантовый компьютер, взлом алгоритма RSA будет возможен за очень небольшое время.
При использовании симметричных шифров всегда возникает проблема: как передать ключ, если канал связи ненадежный? Ведь, получив ключ, противник сможет расшифровать все дальнейшие сообщения. Для алгоритма RSA этой проблемы нет, сторонам достаточно обменяться открытыми ключами, которые можно показывать всем желающим.
У алгоритма RSA есть еще одно достоинство: его можно использовать для цифровой подписи сообщений. Она служит для доказательства авторства документов, защиты сообщений от подделки и умышленных изменений.

Цифровая подпись - это набор символов, который получен в результате шифрования сообщения с помощью личного секретного кода отправителя.

Отправитель может передать вместе с исходным сообщением такое же сообщение, зашифрованное с помощью своего секретного ключа (это и есть цифровая подпись). Получатель расшифровывает цифровую подпись с помощью открытого ключа. Если она совпа­ла с незашифрованным сообщением, можно быть уве­ренным, что его отправил тот человек, который знает секретный код. Если сообщение было изменено при передаче, оно не совпадет с расшифрованной цифровой подписью. Так как сообщение может быть очень длинным, для сокращения объема передаваемых дан­ных чаще всего шифруется не все сообщение, а только его хэш-код.
Во многих современных программах есть возможность шифровать данные с паролем. Например, офисные пакеты OpenOffice.org и Microsoft Office позволяют шифровать все создаваемые документы (для их просмотра и/или изменения нужно ввести пароль). При создании архива (например, в архиваторах 7Zip,WinRAR, WinZip ) также можно установить пароль, без которого извлечь файлы невозможно.
В простейших задачах для шифрования файлов можно использовать бесплатную программу Шифро­вальщик (http://www.familytree.ru/ru/cipher.htm), версии которой существуют для Linux и Windows . Програм­мы TnieCrypt (http://www.truecrypt.org/), BestCrypt (www. jetico.com) и FreeOTFE (freeotfe.org) создают логические диски-контейнеры, информация на которых шифруется. Свободно распространяемая программа DiskCrypto r (diskcryptor.net) позволяет шифровать разделы жестких дисков и даже создавать шифрованные флэш-диски и CD/DVD-диски.
Программа GnuPG (gnupg.org) также относится к свободному программному обеспечению. В ней под­держиваются симметричные и несимметричные шиф­ры, а также различные алгоритмы электронной циф­ровой подписи.

Стеганография

Видео YouTube

При передаче сообщений можно не только применять шифрование, но и скрывать сам факт передачи сообщения.


Стеганография - это наука о скрытой передаче информации путем скрытия самого факта передачи информации.

Древнегреческий историк Геродот описывал, например, такой метод: на бритую голову раба записывалось сообщение, а когда его волосы отрастали, он отправлялся к получателю, который брил его голову и читал сообщение.
Классический метод стеганографии - симпатические (невидимые) чернила, которые проявляются только при определенных условиях (нагрев, освещение, хиический проявитель). Например, текст, написанный молоком, можно прочитать при нагреве.
Сейчас стеганография занимается скрытием информации в текстовых, графических, звуковых и видеофайлах с помощью программного “внедрения” в них нужных сообщений.
Простейший способ - заменять младшие биты файла, в котором закодировано изображение. Причем это нужно сделать так, чтобы разница между исходным и полученным рисунками была неощутима для человека. Например, если в черно-белом рисунке (256 оттенков серого) яркость каждого пикселя кодируется 8 битами. Если поменять 1-2 младших бита этого кода, ““встроив” туда текстовое сообщение, фотография, в которой нет четких границ, почти не изменится. При замене 1 бита каждый байт исходного текстового сообщения хранится в млад­ших битах кодов 8 пикселей. Например, пусть первые 8 пикселей рисунка имеют такие коды:

10101101

10010100

00101010

01010010

10101010

10101010

10101011

10101111

Чтобы закодировать в них код буквы “И” (110010002), нужно изменить младшие биты кодов:

1010110 1

1001010 1

0010101 0

0101001 0

1010101 1

1010101 0

1010101 0

1010111 0

Получателю нужно взять эти младшие биты и “собрать” их вместе в один байт.
Для звуков используются другие методы стеганографии, основанные на добавлении в запись коротких условных сигналов, которые обозначают 1 и 0 и не воспри
нимаются

человеком на слух. Возможна также за­мена одного фрагмента звука на другой.
Для подтверждения авторства и охраны авторских прав на изображения, видео и звуковые файлы приме­няют цифровые водяные знаки - внедренную в файл информацию об авторе. Они получили свое название от старых водяных знаков на деньгах и документах. Для того чтобы установить авторство фотографии, достаточно расшифровать скрытую информацию, за­писанную с помощью водяного знака.
Иногда цифровые водяные знаки делают видимыми (текст или логотип компании на фотографии или на каждом кадре видеофильма). На многих сайтах, занимающихся продажей цифровых фотографий, видимые водяные знаки размещены на фотографиях, предназначенных для предварительного просмотра.


Контрольные вопросы:
  1. Какой алгоритм шифрования принят в России в качестве государственного стандарта?
  2. Что такое блочный алгоритм шифрования?
  3. К какому типу относится алгоритм RSA? На чем основана его криптостойкость?
  4. Что такое цифровая подпись?
  5. Как можно использовать алгоритм RSA для цифровой подписи?
  6. Что такое стеганография?
  7. Какие методы стеганографии существовали до изобретения компьютеров?
  8. Как можно добавить текст в закодированное изображение?
  9. На чем основаны методы стеганографии для звуковых и видеоданных?
  10. Что такое цифровые водяные знаки? Зачем они используются?

Задание:

1.Просмотреть материал лекции и ответить на контрольные вопросы.
2. Пройдитесь по ссылкам и познакомьтесь с программами для шифрования файлов.
3. Зашифруйте любой документ в любом из офисных пакетов OpenOffice.org или Microsoft Office и пришлите мне.

Доброго времени суток уважаемый пользователь. В этой статье мы поговорим на такие темы, как: Алгоритмы шифрования , Симметричный алгоритм шифрования основные понятия .

Большинство средств защиты информации базируется на использовании криптографических шифров и процедур шифрования и расшифрования .

В соответствии со стандартом шифрования ГОСТ 28147-89 под шифром понимают совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, задаваемых ключом и алгоритмом криптографического преобразования.

Ключ – это конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных , обеспечивающее выбор только одного варианта из всех возможных для данного алгоритма. В симметричных криптоалгоритмах для зашифрования и расшифрования сообщения используется один и тот же блок информации (ключ). Хотя алгоритм воздействия на передаваемые данные может быть известен посторонним лицам, но он зависит от секретного ключа, которым должны обладать только отправитель и получатель. Симметричные криптоалгоритмы выполняют преобразование небольшого блока данных (1 бит либо 32-128 бит) в зависимости от секретного ключа таким образом, что прочесть исходное сообщение можно, только зная этот секретный ключ.

Симметричный алгоритм шифрования.

Симметричные криптосистемы позволяют на основе симметричных криптоалгоритмов кодировать и декодировать файлы произвольной длины. В зависимости от размера блока информации симметричные криптоалгоритмы делятся на блочные шифры и поточные шифры.

Для блочных шифров единицей шифрования является блок из нескольких байтов. Результат шифрования зависит от всех исходных байтов этого блока. Блочное шифрование применяется при пакетной передаче информации и кодировании файлов. Блочные шифры шифруют целые блоки информации (от 4 до 32 байт) как единое целое – это значительно увеличивает стойкость преобразований к атаке полным перебором и позволяет использовать различные математические и алгоритмические преобразования.

Для поточных шифров единицей шифрования является один бит или один байт. Результат обычно зависит от шифрования прошедшего ранее входного потока. Эта схема шифрования применяется в системах передачи потоков информации, то есть в тех случаях, когда передача информации начинается и заканчивается в произвольные моменты времени.

Характерная особенность симметричных блочных алгоритмов заключается в том, что в ходе своей работы они производят преобразование блока входной информации фиксированной длины и получают результирующий блок того же объема, но не доступный для прочтения сторонним лицам, не владеющим ключом. Таким образом, схему работы симметричного блочного шифра можно описать функциями:

Функция

С = ЕК (М),
М = DK (C),
где М – исходный (открытый) блок данных;
С – зашифрованный блок данных.

Ключ К является параметром симметричного блочного криптоалгоритма и представляет собой блок двоичной информации фиксированного размера. Исходный М и зашифрованный С блоки данных также имеют равную фиксированную разрядность (но не обязательно равную длине ключа К).

Методика создания цепочек из зашифрованных блочными алгоритмами байтов позволяет шифровать ими пакеты информации неограниченной длины. Отсутствие статистической корреляции между битами выходного потока блочного шифра используется для вычисления контрольных сумм пакетов данных и в хэшировании паролей. На сегодняшний день разработано достаточно много стойких блочных шифров.

Криптоалгоритм считается идеально стойким, если для прочтения зашифрованного блока данных необходим перебор всех возможных ключей до тех пор, пока расшифрованное сообщение не окажется осмысленным. В общем случае стойкость блочного шифра зависит только от длины ключа и возрастает экспоненциально с ее ростом.

Идеально стойкие криптоалгоритмы должны удовлетворять еще одному важному требованию. При известных исходном и зашифрованном значениях блока ключ, которым произведено это преобразование, можно узнать только путем полного перебора его значений.

Ситуации, в которых постороннему наблюдателю известна часть исходного текста, встречаются довольно часто. Это могут быть стандартные надписи в электронных бланках, фиксированные заголовки форматов файлов, часто встречающиеся в тексте длинные слова или последовательности байтов. Поэтому указанное выше требование не является чрезмерным и также строго выполняется стойкими блочными шифрами.

По мнению Клода Шеннона, для получения стойких блочных шифров необходимо использовать два общих принципа: рассеивание и перемешивание.

Примечание

Рассеивание представляет собой распространение влияния одного знака открытого текста на много знаков шифротекста, что позволяет скрыть статистические свойства открытого текста…

Примечание

Перемешивание предполагает использование таких шифрующих преобразований, которые усложняют восстановление взаимосвязи статистических свойств открытого и шифрованного текстов. Однако шифр должен не только затруднять раскрытие, но и обеспечивать легкость зашифрования и расшифрования при известном пользователю секретном ключе…

Распространенным способом достижения эффектов рассеивания и перемешивания является использование составного шифра, то есть такого, который может быть реализован в виде некоторой последовательности простых шифров, каждый из которых вносит свой вклад в значительное суммарное рассеивание и перемешивание.

В составных шифрах в качестве простых шифров чаще всего используются простые перестановки и подстановки. При перестановке просто перемешивают символы открытого текста, причем конкретный вид перемешивания определяется секретным ключом. При подстановке каждый символ открытого текста заменяют другим символом из того же алфавита, а конкретный вид подстановки также определяется секретным ключом. В современном блочном шифре блоки открытого текста и шифротекста представляют собой двоичные последовательности обычно длиной 64 бита. В принципе каждый блок может принимать 2 в 64 степени значений. Поэтому подстановки выполняются в очень большом алфавите, содержащем до 2 в степени 64 «символов».

При многократном чередовании простых перестановок и подстановок, управляемых достаточно длинным секретным ключом, можно получить очень стойкий шифр с хорошим рассеиванием и перемешиванием.

Все действия, производимые блочным криптоалгоритмом над данными, основаны на том факте, что преобразуемый блок может быть представлен в виде целого неотрицательного числа из диапазона, соответствующего его разрядности. Например, 32-битовый блок данных можно интерпретировать как число из диапазона 0 – 4294967295. Кроме того, блок, разрядность которого представляет собой «степень двойки», можно трактовать как сцепление нескольких независимых неотрицательных чисел из меньшего диапазона (указанный выше 32-битовый блок можно также представить в виде сцепления двух независимых 16-битовых чисел из диапазона 0 – 65535 или в виде сцепления четырех независимых 8-битовых чисел из диапазона 0 – 255).

Над этими числами блочный криптоалгоритм производит по определенной схеме следующие действия:

1. Математические функции:
– сложение X’ = X + V;
– «исключающее ИЛИ» X’ = X xor V;
– умножение по модулю 2N + 1 X’ = (X*V) mod (2N + 1);
– умножение по модулю 2N X’ = (X*V) mod 2N.
2. Битовые сдвиги:
– арифметический сдвиг влево X’ = X shl V;
– арифметический сдвиг вправо X’ = X shr V;
– циклический сдвиг влево X’ = X rol V;
– циклический сдвиг вправо X’ = X ror V.
3. Табличные подстановки:
– S-box (англ. substitute) X’ = Table .

В качестве параметра V для любого из этих преобразований может использоваться:

  • фиксированное число (например, X’ = X + 125).
  • число, получаемое из ключа (например, X’ = X + F(K)).
  • число, получаемое из независимой части блока (например, X2’ = X2 + F(X1)).

Примечание

Последний вариант используется в схеме, называемой сетью Фейстеля (по имени ее создателя)…

Сеть Фейстеля.

Последовательность выполняемых над блоком операций, комбинации перечисленных выше вариантов V и сами функции F и составляют отличительные особенности конкретного симметричного блочного криптоалгоритма.

Характерным признаком блочных алгоритмов является многократное и косвенное использование материала ключа. Это определяется в первую очередь требованием невозможности обратного декодирования в отношении ключа при известных исходном и зашифрованном текстах. Для решения этой задачи в приведенных выше преобразованиях чаще всего используется не само значение ключа или его части, а некоторая, иногда необратимая функция от материала ключа. Более того, в подобных преобразованиях один и тот же блок или элемент ключа используется многократно. Это позволяет при выполнении условия обратимости функции относительно величины X сделать функцию необратимой относительно ключа K.

Сетью Фейстеля называется схема (метод) обратимых преобразований текста, при котором значение, вычисленное от одной из частей текста, накладывается на другие части. Сеть Фейстеля представляет собой модификацию метода смешивания текущей части шифруемого блока с результатом некоторой функции, вычисленной от другой независимой части того же блока. Эта методика обеспечивает выполнение важного требования о многократном использовании ключа и материала исходного блока информации. Часто структуру сети выполняют таким образом, чтобы использовать для шифрования и расшифрования один и тот же алгоритм – различие состоит только в порядке использования материала ключа.

На основе сети Фейстеля построены американский стандарт шифрования данных DES и наш ГОСТ 28147-89.