Концепция реляционных баз данных. Основные понятия теории реляционных систем баз данных

возможными ключами, поскольку любое из них можно выбрать в качестве составного ключа.

Например, пусть имеется отношение

R(Город, Адрес, Почтовый_индекс).

Очевидно, что атрибуты Город Адрес Почтовый_индекс. В то же время Почтовый_индекс Город (хотя и не адрес). Оба множества могут быть возможными ключами.

Шаг 2. Переместить любую селекцию в дереве как можно ниже - законы I.4, IY.1, IY.3, IY.5.

Шаг 3. Переместить любую проекцию в низ дерева - законы I.2, IY.5, IY.6.

Шаг 4. Скомбинировать любой каскад селекций (проекций) в одиночную селекцию (проекцию) I.1, I.2, I.5 или селекцию с последующей проекцией.

Шаг 5. Разбить внутренние узлы дерева на группы: объединить двухместные операции с предшествующими или последующим узлу унарными операциями S и P.

Шаг 6. Перейти к более высокому уровню иерархии.

Пример оптимизации. Пусть дана база данных Библиотека:

ИЗД[АТЕЛИ](Название_издательства, Место, Адрес_издательства),

ЧИТ[АТЕЛИ](Фамилия, Адрес, Город, N_форм[уляра]),

ВЫД[АЧИ](N_форм[уляра], N_бк, Дата), где бк - библиотечный каталог, а для обозначения таблиц и полей используем сокращения (без букв в квадратных скобках).

Запрос: найти, у кого находятся книги, выданные до 01.01.1997.Д

Ему соответствует на языке АЛЬФА запрос (рис. 4.8, а)

p НАЗВАНИЕ s ДАТА J 1.1.1997 p S (S F (ВЫД, ЧИТ, КН)),

где F = ЧИТ.N_форм = ВЫД.N_формКН.N_бк = ВЫД.N_бк,

На рис. 4.8, а в условии F разделяют две селекции и перемещают как можно ниже в дереве. Селекция

s ДАТА≤1.1.1997 (4.2)

ниже проекции и двух селекций по законам I.1, I.5.

Селекция (4.2) применяется к произведению (ВЫД×ЧИТ)×КН. Дата - единственный атрибут отношения ВЫД потому

s ДАТА≤1.1.1997 ((ВЫД×ЧИТ)×КН)

(s ДАТА≤1.1.1997 (ВЫД×ЧИТ))×КН

((s ДАТА≤1.1.1997 (ВЫД))×ЧИТ)×КН.

Селекцию можно переместить вниз по дереву. Селекция с условием КН.N_бк = ВЫД.N_бк не может быть перемещена ниже любого декартова произведения, поскольку имеет атрибуты как отношения КН, так и других отношений.

s ЧИТ.N_ФОРМ = s ВЫД.N_ФОРМ может быть перемещена ниже и применена к произведению

s ДАТА≤1.1.1997 ((ВЫД)×ЧИТ).

ВЫД.N_форм есть имя атрибута отношения, полученного в s ДАТА≤1.1.1997 (ВЫД), ибо это атрибут отношения ВЫД.

По закону I.2 две проекции комбинируются в одну pНАЗВАНИЕ и результат отражается в рис. 4.8, б.

По закону I.4 p НАЗВАНИЕ и s кн.N_бк=выд.N_бк заменим на каскад

p НАЗВАНИЕ,

s кн.N_бк=выд.N_бк,

p название кн.N_бк, выд.N_бк. (4.3)

По закону IY.6 выражение (4.3) заменяется на p название кн.N_бк, примененное к отношению КН, и

p выд.N_бк, (4.4)

примененное к левому оператору декартова произведения более высокого уровня (рис. 4.8, б).

Последняя проекция (4.4) взаимодействует с нижней селекцией по закону I.4 и получается каскад:

p выд.N_бк,

s чит.N_форм=выд.N_форм,

p выд.N_бк, чит.N_форм, выд.N_форм. (4.5)

Проекция (4.5) «просеивается» через декартово произведение по закону IY.6 и частично - через s ДАТА≤1.1.1997 (ВЫД) по закону I.4. Кроме того, проекция p выд.N_бк, выд.N_форм, дата - излишняя (это - все атрибуты ВЫД) и исключается. Тогда окончательный результат принимает вид рис. 4.9,
на котором группы операторов обведены пунктирными линиями. Любое из декартовых произведений является фактически эквисоединением, если его скомбинировать с селекцией, находящейся в дереве выше. Иными словами, селекция для ВЫД и проекция для ЧИТ могут быть скомбинированы в группы I и II, при этом сначала выполняются операции группы I, а затем - группы II.

Полученный результат может оказаться неоптимальным, поскольку критерий оптимизации как таковой отсутствует.

Если принять в качестве критерия минимум соединений и декартовых произведений [ c. 204], то для класса так называемых конъюнктивных запросов возможно провести однозначную оптимизацию.

Синхронизация процессов доступа

Синхронизация имеет место как при однопользовательском, так и при многопользовательском режимах.

Здесь возникают понятия «достоверность», «логический элемент работы или транзакция», «объект (запись, столбец, таблица, файл)», «управление параллелелизмом», «восстановление БД».

Первоначально поговорим об однопользовательском режиме.

Под транзакцией понимается:

    1) входное сообщение, передаваемое в систему и отражающее некоторое реальное событие в компьютере (БД);

    2) процесс изменения в БД, вызванный передачей одного входного сообщения.

К транзакции преддъявляются следующие основные требования:

    1) она выполняется полностью или не выполняется совсем;

    2) транзакция должна иметь возможность возврата, при этом независим возврат в начальное состояние до момента изменения состояния всех объектов;

    3) транзакция должна быть воспроизводима: при воспроизводстве блокировку необходимо осуществлять до момента просмотра всех объектов.

Возможна двухфазная и трехфазная схема транзакции. Последняя болеe сложная и применяется в ограниченном объеме (например, в системе управления распределенной БД SDD-1) и будет рассмотрена позднее. Сейчас же поговорим о широко применяемой двухфазной схеме транзакции.

Возврат (восстановление) может быть оперативным, промежуточным, длительным. Для двух первых устанавливается предыдущее состояние (точки фиксации), для последнего - контрольные точки. Контрольные точки предназначены для процедуры восстановления БД после серьезного сбоя и устанавливаются периодически (например, с интервалом 2 - 3 с). Интервал определяется при настройке БД или компьютера.

Перейдем к многопользовательскому режиму (рис. 4.11).
Здесь задача синхронизации процессов усложняется за счет взаимодействия нескольких пользователей.

Для любой транзакции ТР возможны две группы действий:

    1) изменение состояния (запись) - R;

    2) считывание (чтение) состояния - W.

Для двух взаимодействующих транзакций ТР 1 и ТР 2 возможны следующие случаи.

    Одновременное изменение ТР 1 и ТР 2 , при этом возможны наложение данных (потеря обновления) или ошибка в первой транзакции (взаимозависимость восстановления).

    Изменение R 1 и считывание W 2 с двумя возможными последствиями:

    а) изменение с помощью ТР 1 значения, считываемого ТР 2 (воспроизводимость считывания);

    б) откат перед окончанием работы ТР 1 (поскольку нет изменений в ТР 2) и возврат ТР 1 в прежнее состояние.

    Чтение ТР 1 и изменение ТР 2 (нет гарантии воспроизводимости).

Для устранения этих нежелательных явлений возможны такие способы управления.

    Блокировка монопольная или согласованная.

    Отложенные изменения.

    Привязка по меткам времени работы компьютера (временная привязка) и трехфазная схема транзакции.

Второй способ используется редко. Третий способ рассмотрим при изучении распределенных баз данных, а здесь остановимся на первом способе.

Блокировка выполняется только для одной транзакции и одного объекта.

При последовательном (во времени) выполнении транзакций нарушений целостности нет, но такое выполнение требует много времени. В связи с этим используют так называемый параллельный режим (параллелизм). Вводится понятие «правильно оформленная транзакция» .

    Перед обработкой объекта должна быть выполнена его блокировка.

    После обработки объект должен быть разблокирован.

    Перед разблокировкой не должна выполняться повторная блокировка.

    Неблокированный объект не должен освобождаться.

Для параллельного выполнения

Для выхода из тупиков при монопольной блокировке возможны следующие выходы:

При использовании согласованных блокировок возможно:

    1) предупреждение о блокировке для всей области;

    2) блокировка части области, связанной с данной транзакцией.

Жизненный цикл информационных систем

Анализ ситуации (сложность разработки ИС, не эффективное использование ИС), проведенный учеными, показал, что такое положение было вызвано тем, что при разработке программного обеспечения не соблюдались очень важными требования:

· Отсутствие полной спецификации всех требований;

· Отсутствие приемлемой методологии (системы методов) разработки ИС;

· Отсутствие разделения общего глобального проекта на отдельные компоненты, поддающиеся эффективному контролю и управлению.

Жизненный цикл (ЖЦ) информационных систем – это структурный подход к разработке программного обеспечения.

(некая схема) за 26.09.12

1. Планирование разработки ИС. Подготовительные действия, позволяющие с максимальной эффективностью реализовывать этапы ЖЦ ИС. Три основных компонента: оценка объема работ; оценка необходимых ресурсов; оценка общей стоимости проекта.

2. Определение требований к системе. Определение диапазона действий и границ приложения базы данных, функций, состава его пользователей и областей применения.

3. Сбор и анализ требований пользователей. Сбор и анализ информации о той части организации, работа которой будет поддерживаться с помощью создаваемой ИС, определение требований пользователей к системе. Источники: опрос и анкетирование; наблюдение; изучение документов; предыдущий опыт.

4. Проектирование базы данных. Создание проекта базы данных. Два основных подхода к проектированию систем баз данных: «нисходящий » и «восходящий ».

5. Выбор целевой СУБД. Выбор СУБД подходящего типа, предназначенной для поддержки создаваемого приложения базы данных.

6. Разработка приложений. Проектирование интерфейса пользователя и прикладных программ, предназначенных для работы с базой данных.

7. Создание прототипа. Создание рабочей модели приложения баз данных.

8. Реализация. Физическая реализация базы данных и разработанных приложений.

9. Конвертирование и загрузка данных. Перенос существующих данных в новую базу данных, загрузка и модификация существующих приложений с целью организации совместной работы с новой БД.



10. Тестирование. Процесс выполнения прикладных программ с целью поиска ошибок. Стратегии тестирования: нисходящее тестирование; восходящее тестирование; тестирование потоков; интенсивное тестирование.

11. Эксплуатация и сопровождение. Наблюдение за системой и поддержка её нормального функционирования: контроль производительности; сопровождение и модернизация приложений.

Реляционная теория баз данных

Терминология

В 1970 г. Реляционная модель впервые была предложена Э.Ф. Коддом.

В реляционной СУБД предполагается, что пользователь воспринимает БД как набор таблиц (и не как иначе).

Математические отношения.

Теория реляционных БД основана на математической теории отношений.

Пусть D1, D2, … Dn некоторые множества.

Декартовым произведение D1 D2 … Dn = {(X1,X2,…,Xn) | X1 D1, X2 D2, … Xn Dn}

Отношение – подмножество R D1*D2*…*Dn

Например, n=2, D1={2,4} и D2={1,3,5}, D1 * D2 = {(2,1),(2,3),(2,5),(4,1),(4,3),(4,5)}, R={(2,1),(4,1)}

Подмножество м. б. задано условием, например:

R={(x1,x2) |x1 D1, x2 D2, X2=1}, A1, A2, … An – имена атрибутов с доменами D1, D2, … Втб тогда отношение будем записывать в виде:

R(A1:D1,A2:D2,…An:Dn)

Свойства отношений:

· Отношение имеет уникальное имя;

· Каждый атрибут имеет уникальное имя (в отношении);

· Каждая ячейка отношения содержит только атомарное значение и нет повторяющихся групп (отношение нормализовано);

D1 – студенты
D2 – дисциплины: Математика, Информатика

· Порядок следования атрибутов не имеет никакого значения;

· Порядок следования кортежей произвольный;

· Каждый кортеж является уникальным.

Реляционные ключи

Реляционные ключи служат для уникальной идентификации кортежа описания связей между отношениями.

Реляционная целостность.

Реляционная алгебра

Результат операции, может использоваться в качестве операнда для другой операции, что позволяет создавать вложенные выражения (замкнутость РА).

Реляционная алгебра является языком, в котором все кортежи обрабатываются одной командой.

Пять основных операций:

· Выборка,

· Проекция,

· Декартово произведение,

· Объединение,

· Разность.

На основе этих операций могут быть получены другие:

· Соединения,

· Пересечения,

· Деления.

В предикате могут использоваться знаки логических операций ^(And), v(Or), ~(not).

Пример. Получить список всех сотрудником с окладом свыше 300.

Проекция.

Определяет отношение, атрибутами которого являются атр1, …, атрn и содержит только уникальные кортежи.

Декартово произведение

Декартово произведение используется редко, к результату применяют выборку.

Объединение

Разность

Операции соединения.

Тета-соединение

Естественное соединение

Внешнее соединение

То при левом внешнем соединении сохраняется вся исходная информация из отношения R. Аналогично также можно определить правое внешнее соединение.

Полусоединение

Операцию полусоединения можно определить с помощью операторов проекции и соединения.

Пересечение

Представления

Назначение представлений:

· Предоставляет гибкий механизм защиты БД за счет сокрытия некоторой её части от определенных пользователей;

· Позволяет организовать доступ пользователей к данным наиболее удобным для них способом;

· Позволяет упрощать сложные операции с базовыми отношениями.

Правила, которые должны удовлетворить
реляционные СУБД

Для определения того, является ли СУБО реляционной Кодд (1985 г.) предложил 13 правил, которым они должны удовлетворять.

Правило
Фундаментальное правило. Реляционная СУБД должна быть способна управлять базами данных исключительно с помощь её реляционных функций
Представление информации. Вся информация в реляционной БД представляется в явном виде на логическом уровне только одним способом – в виде значений в таблицах. В том числе, метаданные.
Гарантированный доступ. Для каждого элемента данных реляционной БД должен быть гарантирован логический доступ на основе комбинации имени таблицы, значения первичного ключа и имени столбца.
Поддержка неопределенных значений. СУБД поддерживает неопределенные значения (Null).
Реляционный системный каталог. Описание БД должно представляться на логическом уровне таким образом, как и обычные данные, что позволяет пользователям использовать для обращения к ним тот же реляционный язык.
Исчерпывающий подъязык данных. реляционная СУБД может поддерживать несколько языков. Однако должен существовать по крайней мерее один язык, операторы которого позволяли бы выполнить следующие функции: 1. Определение данных; 2. Определение представлений; 3. Команды манипулирования данными; 4. Ограничения целостности; 5. Авторизации пользователей; 6. Организации транзакций
Высокоуровневые операции извлечения, вставки, удаления, обновления. Способность СУБД выполнять операции извлечения данных команд вставки, удаления и обновления как единой операции.
Физическая независимость от данных. От способа хранения
Логическая независимость от данных. Независимость приложений от изменения базовых таблиц.
Независимость ограничений целостности. Ограничения целостности должны определяться на подъязыке реляционных данных и храниться в системном каталоге, а не в прикладных программах.
Независимость от распределения данных.
Правило запрета обходных путей. Если СУБД имеет низкоуровневый язык (с последовательной построчной обработкой), он не должен позволять обходить правила и ограничения целостности, описанных на реляционном языке высокого уровня.

Моделирование данных на основе процесса нормализации

Цель нормализации.

Процесс нормализации был предложен в 1972 году Э. Ф. Коддом – три нормальные формы (НФ): первая (1НФ), вторая (2НФ) и третья (3НФ).

Более строгое определение третьей НФ (Р. Бойс и Э. Ф. Кодд, 1974) – нормальная форма Бойса-Кодда (НФБК).

Избыточность данных и аномалии обработки.

Отсутствие нормализации приводит:

· Избыточность данных

· Аномалии вставки (невозможно добавлять записи)

· Аномалии удаления (при удалении информации теряется другая информация)

· Аномалии обновления (требуется обновление многих записей)

· Свойства сохранения без потерь и сохранения зависимости.

Функциональные зависимости

ПРОГРАММИРОВАНИЕ В СРЕДЕ DELPHI 6

Базы данных. Создание отчета с помощью Word.

Утверждено Редакционно-издательским советом

университета в качестве лабораторного практикума

Воронеж 2004


УДК 681.3

Воробьёв Э.И., Короткевич Д.Э.. Программирование в среде Delphi 6: Лабораторный практикум: Ч. 2: Базы данных. Создание отчета с помощью Word. Потоки. Воронеж: Воронеж. гос. техн. ун-т, 2004. 107 с.

Во второй части лабораторного практикума рассматриваются теоретические и практические сведения для написания программ в среде Delphi 6 на тему: «Проектирование баз данных, создание отчетов в программе Word и использование потоков при создании высокопроизводительных приложений».

Издание соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по направлению 230100 «Информатика и вычислительная техника», специальности 230104 «Системы автоматизированного проектирования», дисциплине «Программирование на языках высокого уровня».

Табл. 3. Ил. 19. Библиогр.: 7 назв.

Научный редактор: д-р техн. наук, проф. Я.Е. Львович

Рецензенты: кафедра вычислительной техники Воронеж- ской лесотехнической академии (зав. кафедрой д-р техн. наук, проф. В.Е. Межов);

д-р техн. наук, проф. О.Ю.Макаров

© Воробьёв Э.И., Короткевич Д.Э., 2004

© Оформление. Воронежский государственный

технический университет, 2004


Введение

Концепция баз данных

Базы данных считаются основным преимуществом Delphi. Даже специализированные языки для работы с базами данных (такие, как MS Visual FoxPro) явно уступают по простоте и мощи программирования этого типа приложений. Delphi скрывает все сложности и в то же время даёт величайшую мощь. Ещё не было такой задачи, которую не смогли бы реализовать на Delphi за короткий промежуток времени. А главное, что всё это реализовано очень удобно и легко для понимания. В Delphi можно создавать простые приложения, даже со сложными базами, без единой строчки кода. В данном учебном пособии рассмотрены лабораторные задания для освоения приемов работы с локальными базами данных.

Теория реляционных баз данных

Ещё десять лет назад программирование баз данных было очень сложным занятием. Сейчас уже такое трудно себе представить, потому что благодаря Delphi процесс написания программ упростился, а количество разновидностей баз данных уже исчисляется десятками.

Базы данных делятся на локальные (установленные на компьютере клиента, там же где и работает программа) и удалённые (установленные на сервере, удалённом компьютере). Серверные базы данных располагаются на удалённом компьютере и работают под управлением серверного программного обеспечения. К их главным преимуществам можно отнести возможность работы с одной базой данных одновременно несколькими пользователями, и при этом осуществляется минимальная нагрузка на сеть. Есть ещё сетевые базы данных, которые создают слишком большую нагрузку на сеть и неудобны в работе как для программиста, так и для конечного пользователя. Когда программа присоединяется к сетевой базе данных, то она выкачивает с сервера практически полную его копию. Если Вы внесли изменения, то Ваша копия полностью закачивается обратно. Это очень неудобно, потому что создаётся большая нагрузка на сеть из-за излишней перекачки данных. При клиент-серверной технологии программа клиент посылает простой текстовый запрос на сервер на получение каких-либо данных. Сервер обрабатывает его и возвращает только необходимую порцию данных. Когда нужно изменить какие-то данные опять посылается запрос к серверу на их изменение, и сервер изменяет данные в своей базе. Таким образом, по сети происходит перекачка в основном только текстовых запросов, которые в основном занимают меньше килобайта. Все данные обрабатывает сервер, а значит, машина клиента загружается намного меньше и не так сильно требовательна к ресурсам. Сервер отсылает клиенту только самые необходимые данные, а значит, отсутствует излишняя перекачка копии всей базы. Благодаря всему этому сетевые базы данных уже устарели и практически не используются. Их практически полностью вытесняет технология клиент-сервер. А вот локальные базы данных будут жить всегда. Может измениться формат их хранения или добавиться какие-то новые функции, но сами базы данных будут существовать. Для дальнейшего рассмотрения нам надо определить новое понятие – таблица . Пока что говорились только общие принципы, поэтому использовалось общее понятие баз данных . Таблица базы данных – это как двухмерный массив, в котором в столбец выстроены данные (яркий пример таблицы – Excel). База данных – грубо говоря, это всего лишь файл, в котором может храниться от одной до нескольких таблиц. Большинство локальных баз данных могут хранить только одну таблицу (dBase, Paradox, XML). Но есть представители локальных баз, где в одном файле заключено несколько таблиц (например Access).

Локальные базы данных

Из локальных баз данных рассмотрим реляционные как самые распространённые. Что такое реляционная база данных? Это таблица, в которой в качестве столбцов выступают имена хранимых в ней данных, а каждая строка хранит сами данные. Таблица базы данных похожа на электронную таблицу Excel (если быть точнее, то Excel хранит свои данные в виде собственного формата, построенного на основе технологии баз данных). Локальные таблицы баз данных могут храниться на локальном жёстком диске или централизовано сохраняться на сетевой диск файлового сервера. Эти файлы можно копировать с помощью стандартных средств как любой другой файл, потому что сами таблицы базы данных не привязаны к определённому месту расположения. Главное, чтобы программа могла найти таблицу. В каждой таблице должно быть одно уникальное поле, которое однозначно будет идентифицировать строку. Это поле называется ключевым. Эти поля очень часто используются для связывания нескольких таблиц между собой. Но даже если таблица не связана, ключевое поле всё равно обязательно. В качестве ключа желательно использовать численный тип и если позволяет база данных, то будет лучше если он будет типа "autoincrement" (автоматически увеличивающееся/уменьшающееся число или счётчик). Имена столбцов в таблице базе данных также должны быть уникальными, но в этом случае не обязательно числовыми. Их можно называть как угодно, лишь бы было уникально и понятно. Каждый столбец (поле базы данных) обязательно должен иметь определённый тип. Количество типов и их разновидности зависят от типа базы данных, например формат dBASE (файлы с расширением DBF) поддерживает только 6 типов, а Paradox уже до 15. База данных может храниться в одном файле (Access) или в нескольких (Paradox, dBase). Точнее сказать, данные таблицы всегда хранятся в одном файле, а вот дополнительная информация может располагаться в отдельных файлах. В качестве дополнительной информации могут быть индексы, ограничения или список значений по умолчанию для конкретных полей. Если хотя бы один из файлов запортится или будет удалён, то данные могут стать недоступными для редактирования.

Что такое индексы ? Очень часто данные из таблиц подвергаются каким-то изменениям, поэтому прежде чем произвести редактирование над какой-либо строкой, необходимо её найти. Даже статические таблицы, использующиеся в качестве справочников, тоже подвергаются операциям поиска перед выводом запрашиваемых данных. Поиск достаточно трудоёмкая операция, особенно если таблица содержит очень много строк. Индексы направлены на ускорение этой процедуры, а так же могут использоваться в качестве отправной точки при сортировке. На данном этапе достаточно знать, что не проиндексированное поле невозможно упорядочить.

Если надо, чтобы какая-то таблица была упорядочена по полю «Фамилия », то это поле надо сначала проиндексировать. Затем нужно только указать, что таблица должна работать сейчас с таким-то индексом, и она сортируется автоматически.

В хорошо спроектированной базе данных избыточность данных исключается, и вероятность сохранения противоречивых данных минимизируется. Таким образом, создание баз данных преследует две основные цели: понизить избыточность данных и повысить их надежность.

Жизненный цикл любого программного продукта, в том числе и системы управления базой данных, состоит (по-крупному) из стадий проектирования, реализации и эксплуатации.

Естественно, наиболее значительным фактором в жизненном цикле приложения, работающего с базой данных, является стадия проектирования. От того, насколько тщательно продумана структура базы, насколько четко определены связи между ее элементами, зависит производительность системы и ее информационная насыщенность, а значит - и время ее жизни.

Требования к базам данных

Итак, хорошо спроектированная база данных:

1. Удовлетворяет всем требованиям пользователей к содержимому базы данных. Перед проектированием базы необходимо провести обширные исследования требований пользователей к функционированию базы данных.

2. Гарантирует непротиворечивость и целостность данных. При проектировании таблиц нужно определить их атрибуты и некоторые правила, ограничивающие возможность ввода пользователем неверных значений. Для верификации данных перед непосредственной записью их в таблицу база данных должна осуществлять вызов правил модели данных и тем самым гарантировать сохранение целостности информации.

3. Обеспечивает естественное, легкое для восприятия структурирование информации. Качественное построение базы позволяет делать запросы к базе более “прозрачными” и легкими для понимания; следовательно, снижается вероятность внесения некорректных данных и улучшается качество сопровождения базы.

4. Удовлетворяет требованиям пользователей к производительности базы данных. При больших объемах информации вопросы сохранения производительности

начинают играть главную роль, сразу “высвечивая” все недочеты этапа проектирования.

Следующие пункты представляют основные шаги проектирования базы данных:

1. Определить информационные потребности базы данных.

2. Проанализировать объекты реального мира, которые необходимо смоделировать в базе данных. Сформировать из этих объектов сущности и характеристики этих сущностей (например, для сущности “деталь” характеристиками могут быть “название”, “цвет”, “вес” и т.п.) и сформировать их список.

3. Поставить в соответствие сущностям и характеристикам - таблицы и столбцы (поля) в нотации выбранной Вами СУБД (Paradox, dBase, FoxPro, Access, Clipper, InterBase, Sybase, Informix, Oracle и т.д.).

4. Определить атрибуты, которые уникальным образом идентифицируют каждый объект.

5. Выработать правила, которые будут устанавливать и поддерживать целостность данных.

6. Установить связи между объектами (таблицами и столбцами), провести нормализацию таблиц.

7. Спланировать вопросы надежности данных и, при необходимости, сохранения секретности информации.


Похожая информация.


База данных - совокупность связанных данных, организованных по определенным правилам, предусматривающим общие принципы описания, хранения и манипулирования, независимая от прикладных программ. Реляционная база данных - это база данных, в которой информация представлена в виде двумерных таблиц, сохраняемых в файлах. Таблица состоит из строк, называемых записями, записи состоят из столбцов, называемых полями.

Система управления базами данных (СУБД) - это совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями. Пользователей СУБД можно разделить на три большие группы:

  • разработчики базы данных отвечают за написание прикладных программ, использующих базу данных;
  • конечные пользователи работают с базой данных либо через некоторую информационную систему, либо пользовательский интерфейс системы управления базами данных;
  • администраторы базы данных обеспечивают поддержание работоспособности базы данных, сохранность и безопасность данных, настройку работы базы данных.

Базовой архитектурой СУБД является трехуровневая модель, в рамках которой СУБД представляется состоящей из внешнего, концептуального и внутреннего уровня. На внешнем уровне содержимое СУБД представляется так, как его видит отдельный пользователь. На концептуальном уровне данные СУБД описываются в обобщенной модели предметной области, для которой создается информационная система. Внутренний уровень - это собственно данные, расположенные в файлах. В ведении СУБД также находится словарь данных, содержащий сведения обо всем, что хранится в базе данных (имена всех таблиц и представлений, хранимых процедур и триггеров, учетные записи пользователей СУБД и т.п.). Сведения такого рода принято называть метаданными.

Реляционная модель данных основывается на математических принципах теории множеств и математической логике. Эти принципы были впервые использованы для моделирования данных в 60-х годах прошлого века Коддом. Реляционная модель определяет, каким образом данные могут быть представлены (структура данных), каким образом данные могут быть защищены от некорректных изменений (целостность данных) и какие операции могут быть выполнены с данными (операции с данными). Основные понятия реляционной модели:

  • все данные концептуально представляются как упорядоченное набор строк и столбцов, называемых отношением;
  • все данные являются скалярными;
  • строка данных называется кортежем, количество кортежей называется кардинальным числом;
  • каждый столбец в кортеже называется атрибутом, количество атрибутов называется степенью отношения;
  • отсутствие информации описывается значением NULL;
  • потенциальный ключ K для отношения R - это подмножество множества атрибутов R, всегда обладающее свойством уникальности (т.е. нет двух кортежей в отношении R с одинаковым значение K) и свойством не избыточности (т.е. никакое из подмножеств K не обладает свойством уникальности). Потенциальный ключ, состоящий из более чем одного атрибута, называется составным, а из одного - простым. Первичный ключ - это потенциальный ключ, по которому физически упорядочены кортежи в отношении.
  • внешний ключ определяется следующим образом. Пусть R2 - некоторое отношение. Тогда внешний ключ FK в отношении R2 - это такое подмножество множества атрибутов R2, что существует отношение R1 с потенциальным ключом K и значение FK в любом кортеже R2 всегда совпадает со значением K некоторого кортежа в R1. Ограничение, по которому значения внешнего ключа должны быть адекватны значениям соответствующего потенциального ключа, называют ссылочным ограничением. Соответственно, под ссылочной целостностью понимают требование того, чтобы в базе данных не было нарушений ссылочных ограничений.

Следующие операции допустимыми над данными в реляционной модели:

  • выборка возвращает отношение, содержащие все кортежи заданного отношения, удовлетворяющие определенным условиям;
  • проекция возвращает отношение, содержащие все кортежи заданного отношения после исключения из него некоторых атрибутов;
  • произведение возвращает отношение, содержащие кортежи, которые являются всеми возможными сочетаниями кортежей, принадлежащих двум исходным отношениям;
  • объединение возвращает отношение, содержащие все кортежи, принадлежащие двум исходным отношениям;
  • соединение возвращает отношение, кортежи которого являются соединением двух кортежей, принадлежащих исходным отношениям и имеющим общее значение для одного или более атрибутов исходных отношений; при этом общее значение атрибутов встречается в результирующем кортеже только один раз.

1.5.1. Базы данных и системы управления базами данных. Для решения информационно-поисковых задач, начиная с 60-70-х годов ХХ века, используется структурированное представление информации, относящейся к рассматриваемой предметной области. Структуризация информации производится с помощью особого вида моделей представления данных, отражающих свойства информационных объектов и имеющиеся связи между ними.

Описание информационных объектов и связей между ними на верхнем концептуальном уровне производится с помощью ER диаграмм (см. раздел??? в приложении). В настоящем разделе рассматривается построение моделей самих информационных объектов (в дальнейшем, просто информационных моделей), соответствующих следующему после концептуального, логическому уровню проектирования ИПС и являющихся основой решения информационно-поисковых, информационно-аналитических и других задач.

Можно выделить три типа моделей структуризации или, как принято говорить, представления данных: сетевая, иерархическая и реляционная. Реляционная модель представления данных в настоящее время является наиболее распространенной по причине ее простоты, естественности восприятия, а также наличия развитых математических и программных средств работы с данной моделью и других аспектов. В дальнейшем будут рассматриваться только реляционные модели информационных объектов.

Применение удобных для пользователя структурированных моделей представления информации привело к разделению моделей хранения информации в компьютере на логические модели ифизические модели. Это послужило причиной появления принципиально нового подхода к организации хранения структурированной информации, получившего название концепциибаз данных . В настоящее время базы данных являются основным (если не единственным) используемым на практике способом хранения информации.

Логическая модель отражает логическую структуру данных, объединенных в единый информационный объект. Кроме того, логическая модель данных лежит в основе языка манипулирования данными, с помощью которого пользователем формируются запросы на поиск, обновление информации и др.

Физическая модель отражает фактическое размещение информации на физических носителях (внешних запоминающих устройствах: жесткий диск, оптический диск и т.д.). Для их описания используются файловые модели, представляющие собой структурированные линейные цепочки символов.

Критерием эффективности логических моделей является возможность реализации на их основе широкого спектра различных по смыслу запросов. Критерием эффективности физических моделей является рациональное использование внешней памяти.

Благодаря разделению моделей хранения информации на логические и физические, появилась возможность рассмотреть раздельно задачу выбора языка манипулирования данными и задачу эффективного использования внешней памяти.

Подобная «развязка» данных задач позволила:

    использовать языки высокого уровня для формирования семантически насыщенных запросов к базам данных;

    обеспечить увеличение объема хранимой информации на внешних запоминающих устройствах.

Раздельное рассмотрение логических и физических моделей информации в базах данных привело к тому, что пользователь при построении информационных моделей предметных областей стал «работать» только с их логическими моделями. Для размещения информации на внешних запоминающих устройствах, реализации на физическом уровне операций по манипулированию данными были созданы специальные программно-аппаратные средства, получившие название систем управления базами данных (СУБД). Они выступают в роли своего рода «посредника» между логической и физической моделью данных. В этом смысле роль СУБД схожа с ролью операционных систем.

Таким образом, с помощью баз данных (БД) осуществляется хранение структурированной (с помощью логической модели данных) информации о предметной области, а с помощью СУБД осуществляется управление данной информацией, или, как принято говорить, управление БД. Это дает возможность:

    Предоставить пользователю удобный интерфейс для формирования:

    логической структуры данных (уровень логического проектирования БД) с помощью языка структурных схем;

    физической структуры данных (уровень физического проектирования БД) с помощью специального языка, получившего название языка определения данных .

    Оформлять на языке запросов , илиязыке манипулирования данными , принятом в конкретной СУБД, различные запросы пользователя на поиск и обработку информации.

    Обеспечивать длительное хранение больших массивов данных, (измеряемых гигабайтами и более), защищая их от случайной порчи или неавторизованного использования и обеспечивая при этом актуализацию информации, хранящейся в БД.

    Обеспечивать распределенный доступ к данным нескольких пользователей, что существенно повышает эффективность хранения и обработки информации в БД по сравнению с файловыми системами хранения и обработки информации.

Комментарий 1 . Разработка структуры данных на логическом уровне производится в понятном для разработчика виде (возможно использование графических средств) и не связана с физическим уровнем реализации структур данных, т.е. наряду с внутренним представлением объектов существует его внешнее представление. Пользователи объекта видят только его внешнее определение и не задумываются над тем, как он определяется и функционирует. Одно из преимуществ такого подхода, а именноабстрагирования данных , заключается в том, что можно изменить внутреннее определение объекта без каких-либо последствий для его пользователей при условии, что внешнее определение объекта остается неизменным. Аналогичным образом, в подходе с использованием баз данных структура данных отделена от приложений и хранится в базе данных. Добавление новых структур данных или изменение существующих никак не влияет на приложения, при условии, что они не зависят непосредственно от изменяемых компонентов. Например, добавление нового поля в запись или создание нового файла никак не повлияет на работу имеющихся приложений. Однако удаление поля из используемого приложением файла повлияет на это приложение, а потому его также потребуется соответствующим образом модифицировать.

Комментарий 2 . Использование языка манипулирования данными, базирующегося на математически обоснованном аппарате, обеспечивает корректность работы с данными или, по-другому, предсказуемость.

Комментарий 3 . Применение СУБД обеспечивает контролируемый доступ к базе данных за счет наличия:

    системы обеспечения защиты, предотвращающей несанкционированный доступ к базе данных со стороны пользователей;

    системы поддержки целостности данных, обеспечивающей непротиворечивое состояние хранимых данных;

    системы восстановления, позволяющей восстановить базу данных до предыдущего непротиворечивого состояния, нарушенного в результате сбоя аппаратного или программного обеспечения.

Комментарий 4 . При широком применении компьютерных сетей важность и применимость СУБД еще более возросла, в силу того, что СУБД обладают сетевыми возможностями. СУБД включают систему управления параллельной работой приложений, контролирующей процессы их совместного доступа к базе данных. Кроме того, основной предпосылкой разработки систем, использующих базы данных, является стремление объединить все обрабатываемые в организации данные в единое целое и обеспечить к ним контролируемый доступ. Хотя интеграция и предоставление контролируемого доступа могут способствовать централизации, последняя не является самоцелью.

На практике создание компьютерных сетей приводит к децентрализации обработки данных. Децентрализованный подход, по сути, отражает организационную структуру многих компаний, логически состоящих из отдельных подразделений, отделов, проектных групп и т.п., которые физически распределены по разным офисам, отделениям, предприятиям или филиалам, причем каждая отдельная производственная единица имеет дело с собственным набором обрабатываемых данных. Разработка распределенных баз данных, отражающих организационные структуры предприятий, позволяет сделать общедоступными данные, поддерживаемые каждым из существующих подразделений, обеспечив при этом их хранение именно в тех местах, где они чаще всего используются. Подобный подход расширяет возможности совместного использования информации, одновременно повышая эффективность доступа к ней.

В процессе научных исследований, посвященных тому, как именно должна быть устроена СУБД, предлагались различные способы реализации. Самым жизнеспособным из них оказалась предложенная американским комитетом по стандартизации ANSI (American National Standards Institute) трехуровневая система организации БД, изображенная на рис. 3:

Рис. 3. Трехуровневая модель базы данных

Уровень внешних моделей - самый верхний уровень, где каждая модель имеет свое "видение" данных. Этот уровень определяет точку зрения на БД отдельных приложений. Каждое приложение видит и обрабатывает только те данные, которые необходимы именно этому приложению. Например, система распределения работ использует сведения о квалификации сотрудника, но ее не интересуют сведения об окладе, домашнем адресе и телефоне сотрудника, и наоборот, именно эти сведения используются в подсистеме отдела кадров.

Концептуальный уровень - центральное звено, здесь база данных представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной базой данных. Фактически концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создавалась база данных. Как любая модель, концептуальная модель отражает только существенные, с точки зрения обработки, особенности объектов реального мира.

Физический уровень - собственно данные, расположенных в файлах на внешних носителях информации.

Эта архитектура позволяет обеспечить логическую (между уровнями 1 и 2) и физическую (между уровнями 2 и 3) независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения без корректировки других приложений, работающих с этой же базой данных. Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с данной базой данных. Это именно то, чего не хватало при использовании файловых систем. Выделение концептуального уровня позволило разработать аппарат централизованного управления базой данных.

1.5.2. Понятие отношения, его основные свойства и характеристики. Основным конструктивным и семантически полным (т.е. имеющим конкретное смысловое содержание по отношению к рассматриваемой предметной области) структурным блоком реляционных БД являетсяотношение .