Разновидности полевых транзисторов. Что такое полевой транзистор и как его проверить Какие основные параметры имеет полевой транзистор

Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называют полевыми транзисторами. У них в создании электрического тока участвуют носители заряда только одного типа (электроны или дырки).

Полевые транзисторы бывают двух видов: с управляющим p-n-переходом и со структурой металл - диэлектрик - полупроводник (МДП-транзисторы).

Рис. 2.37. Упрощенная структура полевого транзистора с управляющим (а); условные обозначения транзистора, имеющего канал n-типа (б) и р-типа (в); типовые структуры (г, д): структура транзистора с повышенным быстродействием (е)

Транзистор с управляющим p-n-переходом (рис. 2.37) представляет собой пластину (участок) из полупроводникового материала, имеющего электропроводность определенного типа, от концов которой сделаны два вывода - электроды стока и истока. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого сделан третий вывод - затвор.

Внешние напряжения прикладывают так, что между электродами стока и истока протекает электрический ток, а напряжение, приложенное к затвору, смещает электрический переход в обратном направлении. Сопротивление области, расположенной под электрическим переходом, которая носит название канала, зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала.

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения.

Электрод, от которого начинают движение основные носители заряда в канале, называют истоком, а электрод, к которому движутся основные носители заряда, называют стоком. Упрощенная структура полевого транзистора с управляющим p-n-переходом приведена на рис. 2.37, а. Условные обозначения даны на рис. 2.37, б, в, а структуры выпускаемых промышленностью полевых транзисторов - на рис. 2.37, г - е.

Если в пластинке полупроводника, например n-типа, созданы зоны с электропроводностью p-типа, то при подаче на p-n-переход напряжения, смещающего его в обратном направлении, образуются области, обедненные основными носителями заряда (рис. 2.37, а). Сопротивление полупроводника между электродами истока и стока увеличивается, так как ток проходит только по узкому каналу между переходами. Изменение напряжения затвор - исток приводит к изменению размеров зоны объемного заряда (размеров ), т. е. к изменению сопротивления канала. Канал может быть почти полностью перекрыт и тогда сопротивление между истоком и стоком будет очень высоким (несколько - десятки ).

Напряжение между затвором и истоком, при котором ток стока достигает заданного низкого значения , называют напряжением отсечки полевого транзистора . Строго говоря, при напряжении отсечки транзистор должен закрываться полностью, но наличие утечек и сложность измерения особо малых токов заставляют считать напряжением отсечки то напряжение, при котором ток достигает определенного малого значения. Поэтому в технических условиях на транзистор указывают, при каком токе стока произведено измерение .

Ширина p-n-перехода зависит также от тока, протекающего через канал. Если , например (рис. 2.37, а), то ток , протекающий через транзистор, создаст по длине последнего падение напряжения, которое оказывается запирающим для перехода затвор - канал.

Рис. 2.38. Выходные характеристики полевого транзистора с управляющим его входная характеристика (6) и характеристика передачи (стокозатворная) (в): I - крутая область; II - пологая область, или область насыщения; III - область пробоя

Это приводит к увеличению ширины и соответственно к уменьшению сечения и проводимости канала, причем ширина p-n-перехода увеличивается по мере приближения к области стока, где будет иметь место наибольшее падение напряжения, вызванное током на сопротивлении канала . Так, если считать, что сопротивление транзистора определяется только сопротивлением канала, то у края p-n-перехода, обращенного к истоку, будет действовать напряжение , а у края, обращенного к стоку, - напряжение . При малых значениях напряжения и малом транзистор ведет себя как линейное сопротивление. Увеличение приводит к почти линейному возрастанию , а уменьшение - к соответствующему уменьшению . По мере роста характеристика все сильнее отклоняется от линейной, что связано с сужением канала у стокового конца. При определенном значении тока наступает так называемый режим насыщения (участок II на рис. 2.38, а), который характеризуется тем. что с увеличением ток меняется незначительно. Это происходит потому, что при большом напряжении канал у стока стягивается в узкую горловину. Наступает своеобразное динамическое равновесие, при котором увеличение и рост тока вызывают дальнейшее сужение канала и соответственно уменьшение тока . В итоге последний остается почти постоянным. Напряжение, при котором наступает режим насыщения, называется напряжением насыщения. Оно, как видно из рис. , меняется при изменении напряжения . Так как влияние на ширину канала у стокового вывода практически одинаково, то

Итак, напряжение отсечки, определенное при малом напряжении , численно равно напряжению насыщения при , а напряжение насыщения при определенном напряжении на затворе равно разности напряжения огсечки и напряжения затвор - исток.

При значительном увеличении напряжения стокового конца наблюдается пробой p-n-перехода.

В выходных характеристиках полевого транзистора можно выделить две рабочие области ОА и ОВ. Область ОА называют крутой областью характеристики, обласгь АВ - пологой или областью насыщения. В крутой области транзистор может быть использован как омическое управляемое сопротивление. В усилительных каскадах транзистор работает на пологим участке характеристики. За точкой В возникает пробой электрического перехода.

Входная характеристика полевою транзистора с управляющим -переходом (рис. 2.38,б) представляет собой обратную ветвь вольт-амперной характеристики -перехода. Хотя ток затвора несколько меняется при изменении напряжения и достигает наибольшего значения при условии короткого замыкания выводов истока и стока (ток утечки затвора ) - им в большинстве случаев можно пренебречь. Изменение напряжения не вызывает существенных изменений тока затвора, что характерно для обратного тока -переходa.

При работе в пологой области вольт-амперной характеристики ток стока при заданном напряжении 11ш определяют из выражения

где - начальный ток стока, под которым ток при и напряжении на стоке, превышающем напряжение насыщения: .

Так как управление полевым транзистором осуществляется напряжением на затворе, то для количественном оценки управляющего действия затвора используют крутизну характеристики

Крутизна характеристики достигает максимального значения при . Для определения значения S при любом напряжении продифференцируем выражение

При выражение (2.73) примет вид

Подставив (1.74) в выражение (1.73), получим .

Таким образом, крутизна характеристики полевого транзистора уменьшается при увеличении напряжения, приложенного к его затвору.

Начальное значение крутизны характеристики можно определить графоаналитическим способом. Для этого проведем касатетельную из точки к стокозатворной характеристике (рис. 2.38. в). Она отсечет на оси напряжений отрезок , и ее наклон определит значение .

Усилительные свойства полевых транзисторов характеризуются коэффициентом усиления

который связан с крутизной характеристики и внутренним сопротивлением уравнением , где - дифференциальное внутреннее сопротивление транзистора.

Действительно, в общем случае .

Если при одновременном изменении и , то , откуда

Так же как и у биполярных, у полевых транзисторов различают режимы большого и малого сигналов. Режим большого сигнала чаще всего рассчитывают с помощью входных и выходных характеристик транзистора и эквивалентной схемы рис. 2.39, а. Для анализа режима малого сигнала широко применяют малосигнальные эквивалентные схемы рис. 2.39, б-г (транзистор с каналом p-типа). Так как сопротивления закрытых переходов , в кремниевых полевых транзисторах велики (десятки - сотни МОм), их в большинстве случаев можно не учитывать. Для практических расчетов наиболее удобна эквивалентная схема рис. 2.39, г, хотя она значительно хуже отражает действительные физические процессы, протекающие в рассматриваемых транзисторах. Все емкости затвора на схеме заменены одной эквивалентной емкостью С„ которая заряжается через усредненное эквивалентное сопротивление .

Рис. 2.39. Упрощенная эквивалентная схема полевого транзистора с управляющим p-n-переходом для постоянного тока (а); малосигнальные эквивалентные схемы: полная (б), упрощенная (в), модифицированная (г).

Можно считать, что равно статическому сопротивлению в крутой области характеристик - сопротивление между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток - исток, меньшем напряжения насыщения. Сопротивление затвора (омическое) отражено эквивалентным сопротивлением , которое ввиду его большого значения (десятки-сотни ) можно не учитывать.

Типовые значения параметров кремниевых транзисторов, входящих в эквивалентную схему: .

Емкости у полевого транзистора, а также конечная скорость движения носителей заряда в канале определяют его инерционные свойства. Инерционность транзистора в первом приближении учитывают путем введения операторной крутизны характеристики

где - предельная частота, определенная на уровне 0,7 статического значения крутизны характеристики.

При изменении температуры параметры и характеристики полевых транзисторов с управляющим изменяются из-за воздействия следующих факторов: изменения обратного тока закрытого p-n-перехода; изменения контактной разности потенциалов изменения удельного сопротивления канала.

Обратный ток у закрытого возрастает по экспоненциальному закону при увеличении температуры. Ориентировочно можно считать, что он удваивается при увеличении температуры на 6-8 С. Если в цепи затвора транзистора стоит большое внешнее сопротивление, то падение напряжения на нем, вызванное изменившимся током, может существенно изменить напряжение на затворе.

Контактная разность потенциалов уменьшается при увеличении температуры приблизительно на . При неизменном напряжении на затворе это приводит к увеличению тока стока. Для транзисторов с низким напряжением отсечки этот эффект является преобладающим и изменения тока стока будут иметь положительные значения.

Так как температурный коэффициент, характеризующий изменение удельного сопротивления канала, положителен, то ток стока при росте температуры уменьшается. Это открывает возможность правильным выбором положения рабочей точки транзистора взаимно компенсировать изменения тока , вызванные изменением контактной разности потенциалов и удельного сопротивления канала. В итоге ток стока будет почти постоянным в широком диапазоне температур.

Рабочую точку, в которой изменение гока стока с изменением температуры имеет минимальное значение, называют термостабильной точкой. Ее ориентировочное положение можно найти из уравнения

Из (2.78) видно, что при значительном крутизна характеристики в термостабильной точке невелика и от транзистора можно получить значительно меньший коэффициент усиления, чем при работе с малым напряжением.

Рис. 2.40. Включение полевого транзистора в схемы: а - с общим истоком; б - с общим стоком

Современные полевые транзисторы, выполненные на основе кремния, работоспособны до температуры 120-150 С. Их включение в схемы усилительных каскадов с общим истоком и общим стоком показано на рис. 2.40, а, б. Постоянное напряжение обеспечивает получение определенного значения сопротивления канала и определенный ток стока . При подаче входного усиливаемого напряжения потенциал затвора меняется, а соответственно изменяются токи стока и истока, а также падение напряжения на резисторе R.

Приращение падения напряжения на резисторе R при большом его значении значительно больше приращений входного напряжения. За счет этого осуществляется усиление сигнала. Ввиду малой распространенности включение с общим затвором не показано. При изменении типа электропроводности канала меняются только полярность приложенных напряжений и направление токов, в том числе и в эквивалентных схемах.

Основными премуществами полевых транзисторов с управляющим p-n-переходом перед биполярными являются высокое входное сопротивление, малые шумы, простота изготовления, отсутствие в открытом состоянии остаточного напряжения между истоком и стоком открытого транзистора.

МДП - транзисторы могут быть двух типов: транзисторы с встроенными каналами (канал создается при изготовлении) и транзисторы с индуцированными каналами (канал возникает под действием напряжения, приложенного к управляющим электродам).

Транзисторы первого типа могут работать как в режиме обеднения канала носителями заряда, так и в режиме обогащения. Транзисторы второго типа можно использовать только в режиме обогащения. У МДП-транзисторов в отличие от транзисторов с управляющим p-n-переходом металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод от кристалла, на котором выполнен прибор (рис. 2.41), называемый подложкой.

Рис. 2.41. Структуры МДП-транзистора: а - планарный транзистр с индуцированным каналом. б - планарный транзистор со встроенным каналом; , транзистр - и .

Рис. 2.42. Распределение носителей заряда в приповерхностном слое

Управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор. Под влиянием образующегося электрического поля у поверхности полупроводника появляется канал -типа за счет отталкивания электронов от поверхности в глубь полупроводника в транзисторе с индуцированным каналом. В транзисторе с встроенным каналом происходит расширение или сужение имевшегося канала. Изменение управляющего напряжения меняет ширину канала и соответственно сопротивление и ток транзистора.

Существенным преимуществом МДП-транзисторов является высокое входное сопротивление, достигающее значений Ом (у транзисторов с управляющим -переходом Ом).

Рассмотрим несколько подробнее работу МДП-транзистора с индуцированным -каналом. Пусть в качестве исходного материала транзистора использован кремний, имеющий электропроводность -типа. Роль диэлектрической пленки выполняет диоксид кремния . При отсутствии смещения приповерхностный слой полупроводника обычно обогащен электронами (рис. 2.42, а). Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки, а также присутствием ловушек на границе . Напомним, что ловушки представляют собой совокупность энергетических уровней, расположенных глубоко в запрещенной зоне, близко к ее середине.

При подаче на затвор отрицательного напряжения электроны приповерхностного слоя отталкиваются в глубь полупроводника, а дырки движутся к поверхности. Приповерхностный слой приобретает дырочную электропроводность (рис. 2.42, б). В нем появляется тонкий инверсный слой, соединяющий сток с истоком. Этот слой играет роль канала. Если между истоком и стоком приложено напряжение, то дырки, перемещаясь по каналу, создают ток стока. Путем изменения напряжения на затворе можно расширять или сужать канал и тем самым увеличивать или уменьшать ток стока.

Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением . Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения .

По мере удаления от поверхности полупроводника концентрация индуцированных дырок уменьшается. На расстоянии, приблизительно равном толщине канала, электропроводность становится собственной. Затем идет участок, обедненный основными носителями заряда (-переход). Благодаря ему сток, исток и канал изолированы от подложки; -переход смещен приложенным напряжением в обратном направлении. Очевидно, что его ширину и ширину канала можно изменять за счет подачи на подложку дополнительного напряжения относительно электродов стока и истока транзистора. Следовательно, током стока можно управлять не только путем изменения напряжения на затворе, но и за счет изменения напряжения на подложке. В этом случае управление МДП-транзистором аналогично управлению полевым транзистором с управляющим -переходом. Для образования канала на затвор должно быть подано напряжение, большее .

Толщина инверсного слоя значительно меньше толщины обедненного слоя. Если последний составляет сотни - тысячи нм, то толщина индуцированного канала составляет всего 1-5 нм. Другими словами, дырки индуцированного канала «прижаты» к поверхности полупроводника, поэтому структура и свойства границы полупроводник - диэлектрик играют в МДП-транзисторах очень важную роль.

Дырки, образующие канал, поступают в него не только из подложки -типа, где их мало и генерируются они сравнительно медленно, но также и из слоев -типа истока и стока, где их концентрация практически неограниченна, а напряженность поля вблизи этих электродов достаточно велика.

В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом -типа), равное или большее напряжения отсечки . При этом дырки из инверсного слоя будут практически полностью вытеснены в глубь полупроводника и канал исчезнет. При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом. МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

Рис. 2.43. Структура МДП-транзистора с измененной шириной канала при протекании тока (а); его выходные характеристики с индуцированным (б) и встроенным (в) каналами: I крутая область; II - пологая область, или область насыщения; III - область пробоя; 1 - обеденный слой

Как и полевые транзисторы с управляющим -переходом, МДП-транзисторы при малых напряжениях (в области рис. 2.43, б, в) ведут себя подобно линеаризованному управляемому сопротивлению. При увеличении напряжения ширина канала уменьшается вследствие падения на нем напряжения и изменения результирующего электрического поля. Это особенно сильно проявляется в той части канала, которая находится вблизи стока (рис. 2.43, а). Перепады напряжения, создаваемые током , приводят к неравномерному распределению напряженности электрического поля вдоль канала, причем оно увеличивается по мере приближения к стоку. При напряжении канал вблизи стока становится настолько узким, что наступает динамическое равновесие, когда увеличение напряжения вызывает уменьшение ширины канала и повышение его сопротивления. В итоге ток мало меняется при дальнейшем увеличении напряжения . Эти процессы изменения ширины канала в зависимости от напряжения такие же, как и в полевых транзисторах с управляющим p-n-переходом.

Выходные характеристики МДП-транзисторов аналогичны характеристикам полевых транзисторов с управляющим (рис. 2.43, б, в). В них можно выделить крутую и пологую области, а также область пробоя. В крутой области МДП-транзистор может работать как электрически управляемое сопротивление. Пологая область II обычно используется при построении усилительных каскадов. Аналитические аппроксимации вольт-амперных характеристик МДП-транзисторов не очень удобны и мало применяются в инженерной практике. При ориентировочных оценках тока стока в области насыщения можно использовать уравнение

Для транзисторов с встроенным каналом можно использовать уравнения (2.79), если заменить и учитывать знаки напряжений и .. Они характеризуют параметры полевого транзистора, который при заданном режиме измерения представлен эквивалентной схемой рис. 2.44, д. Она хуже отражает особенности транзистора, но ее параметры известны или легко могут быть измерены (входная емкость , проходная емкость , выходная емкость ).

Операторное уравнение крутизны характеристики МДП-транзисторов имеет тот же вид, что и для полевых транзисторов с управляющим При этом постоянная времени . В типовом случае при длине канала 5 мкм предельная частота, на которой крутизна характеристики уменьшается в 0,7 раза, лежит в пределах нескольких сотен мегагерц.

Температурная зависимость порогового напряжения и напряжения отсечки обусловлена изменением положения уровня Ферми, изменением объемного заряда в обедненной области и влиянием температуры на значение заряда в диэлектрике. У МДП-транзисторов также можно найти термостабильную рабочую точку, в которой ток стока мало зависит от температуры. У разных транзисторов значение тока стока в термостабильной точке находится в пределах . Важным преимуществом МДП-транзисторов перед биполярными является малое падение напряжения на них при коммутации малых сигналов. Так, если в биполярных транзисторах в режиме насыщения напряжение

При уменьшении оно может быть сведено до значения, стремящегося к нулю. Так как широкое распространение получили МДП-транзисторы с диэлектриком из диоксида кремния , то в дальнейшем будем их называть МОП-транзисторами.

В настоящее время промышленность также выпускает МОП-транзисторы с двумя изолированными затворами (тетродные), например . Наличие второго затвора позволяет одновременно управлять током транзистора с помощью двух управляющих напряжений, что облегчает построение различных усилительных и умножительных устройств. Характеристики их аналогичны характеристикам однозатворных полевых транзисторов, только количество их больше, так как они строятся для напряжения каждого затвора при неизменном напряжении на другом затворе. Соответственно различают крутизну характеристики по первому и второму затворам, напряжение отсечки первого и второго затворов и т. д. Подача напряжений на затворы ничем не отличается от подачи напряжения на затвор однозатворного МОП-транзистора.

Должно превышать пороговое. В противном случае канал не появится и транзистор будет заперт.


Технологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену.

В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах.

Стоит отметить тот факт, что MOSFET"ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству.

Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите.

Что такое HEXFET транзистор?

В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно.

Ячеистые структуры образуют шестиугольник. Из-за шестиугольной или по-другому гексагональной структуры данный тип мощных МОП-транзисторов и называют HEXFET. Первые три буквы этой аббревиатуры взяты от английского слова hex agonal – «гексагональный».

Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так.

Как видим, он имеет шестиугольную структуру.

Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления.

Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала R DS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт.

Вот только небольшая область применения мощных HEXFET транзисторов:

    Схемы коммутации электропитания.

    Зарядные устройства.

    Системы управления электродвигателями.

    Усилители низкой частоты.

Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT .


Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).

Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом:

    D-drain (сток);

    S-source (исток);

    G-gate (затвор).

О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице .

Основные параметры полевых транзисторов.

Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры:

    V DSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.

    I D (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, V GS =10V). В даташите, как правило, указывается максимально возможный ток.

    R DS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (R DS(on)), тем лучше мосфет. Он меньше греется.

    P D (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла.

    V GS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.

    V GS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше V GS(th) , то транзистор будет закрыт.

На графике видно, как уменьшается пороговое напряжение V GS(th) при увеличении температуры кристалла транзистора. При температуре 175 0 C оно составляет около 1 вольта, а при температуре 0 0 C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min. ) и максимальное (max. ) пороговое напряжение.

Рассмотрим основные параметры мощного полевого HEXFET-транзистора на примере IRLZ44ZS фирмы International Rectifier. Несмотря на впечатляющие характеристики, он имеет малогабаритный корпус D 2 PAK для поверхностного монтажа. Глянем в datasheet и оценим параметры этого изделия.

    Предельное напряжение сток-исток (V DSS): 55 Вольт.

    Максимальный ток стока (I D): 51 Ампер.

    Предельное напряжение затвор-исток (V GS): 16 Вольт.

    Сопротивление сток-исток открытого канала (R DS(on)): 13,5 мОм.

    Максимальная мощность (P D): 80 Ватт.

Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)!

Взглянем на «кусочек» из таблицы, где указаны максимальные параметры.

Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25 0 C) до 36А (при t=100 0 С)). Мощность при температуре корпуса 25 0 С равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме.

Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как C iss (Input Capacitance ).

На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается.

Важные особенности MOSFET транзисторов.

Очень важно при работе с полевыми транзисторами, особенно с изолированным затвором, помнить, что они “смертельно” боятся статического электричества . Впаивать их в схему можно только предварительно закоротив выводы между собой тонкой проволокой.

При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник.

Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не "развязан" от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные "наводки" из электросети.

Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор.

Полевым транзистором называется полупроводниковый прибор, в котором ток создаётся только основными носителями зарядов под действием продольного электрического поля, а управляющее этим током осуществляется поперечным электрическим полем, которое создаётся напряжением, приложенным к управляющему электроду.

Несколько определений:

    Вывод полевого транзистора, от которого истекают основные носители зарядов, называется истоком.

    Вывод полевого транзистора, к которому стекают основные носители зарядов, называется стоком.

    Вывод полевого транзистора, к которому прикладывается управляющее напряжение, создающее поперечное электрическое поле называется затвором.

    Участок полупроводника, по которому движутся основные носители зарядов, между p-n переходом, называется каналом полевого транзистора.

Поэтому полевые транзисторы подразделяются на транзисторы с каналом p-типа или n-типа.

Принцип действия рассмотрим на примере транзистора с каналом n-типа.

1) Uзи = 0; Ic1 = max;

2) |Uзи| > 0; Ic2 < Ic1

3) |Uзи| >> 0; Ic3 = 0

На затвор всегда подаётся такое напряжение, чтобы переходы закрывались. Напряжение между стоком и истоком создаёт продольное электрическое поле, за счёт которого через канал движутся основные носители зарядов, создавая ток стока.

1) При отсутствии напряжения на затворе p-n переходы закрыты собственным внутренним полем, ширина их минимальна, а ширина канала максимальна и ток стока будет максимальным.

2) При увеличении запирающего напряжения на затворе ширина p-n переходов увеличивается, а ширина канала и ток стока уменьшаются.

3) При достаточно больших напряжениях на затворе ширина p-n переходов может увеличиться настолько, что они сольются, ток стока станет равным нулю.

Напряжение на затворе, при котором ток стока равен нулю, называется напряжением отсечки.

Вывод: полевой транзистор представляет собой управляемый полупроводниковый прибор, так как, изменяя напряжение на затворе, можно уменьшать ток стока и поэтому принято говорить, что полевые транзисторы с управляющими p-n переходами работают только в режиме обеднения канала.

    Чем объяснить высокое входное сопротивление полевого транзистора?

Т.к. управление полевым транзистором осуществляется электрическим полем, то в управляющем электроде практически нет тока, за исключением тока утечки. Поэтому полевые транзисторы имеют высокое входное сопротивление, порядка 10 14 Ом.

    От чего зависит ток стока полевого транзистора?

Зависит от подаваемых напряжений U си и U зи.

    Схемы включения полевых транзисторов.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

    В чем отличие полевого транзистора от биполярного?

В полевом транзисторе управление током осуществляется электрическим полем, создаваемым приложенным напряжением, а не с помощью тока базы. Поэтому в управляющем электроде практически нет тока, за исключением токов утечки.

    Статический режим включения транзистора. Статические характеристики полевых транзисторов.

К основным характеристикам относятся:

    Стокозатворная характеристика (рис. а) – это зависимость тока стока (Ic) от напряжения на затворе (Uси) для транзисторов с каналом n-типа.

    Стоковая характеристика (рис. б) – это зависимость Ic от Uси при постоянном напряжении на затворе Ic = f (Uси) при Uзи = Const.

Основные параметры:

    Напряжение отсечки.

    Крутизна стокозатворной характеристики. Она показывает, на сколько миллиампер изменится ток стока при изменении напряжения на затворе на 1 В.

    Внутреннее сопротивление (или выходное) полевого транзистора

    Входное сопротивление

    Поясните влияние на ток стока напряжений U зи и U си .

Влияние подводимых напряжений в транзисторе в управляемом иллюстрируется на рисунке:

Три основных рабочих режима транзистора.

В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим p-n-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала ), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала ). Часто просто говорят о режиме обеднения и режиме обогащения . Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим p-n-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

Режим насыщения - характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление как насыщение является одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения ), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток-исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток-исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть его режимом ненасыщенного канала (он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

    Чем характеризуется ключевой режим работы транзистора?

Ключевым называют такой режим работы транзистора, при котором он может быть либо полностью открыт, либо полностью закрыт, а промежуточное состояние, при котором компонент частично открыт, в идеале отсутствует. Мощность, которая выделяется в транзисторе, в статическом режиме равна произведению тока, протекающего через выводы сток-исток, и напряжения, приложенного между этими выводами.

В идеальном случае, когда транзистор открыт, т.е. в режиме насыщения, его сопротивление межу выводами сток-исток стремится к нулю. Мощность потерь в открытом состоянии представляет произведение равного нулю напряжения на определённую величину тока. Таким образом, рассеиваемая мощность равна нулю.

В идеале, когда транзистор закрыт, т.е. в режиме отсечки, его сопротивление между выводами сток-исток стремится к бесконечности. Мощность потерь в закрытом состоянии есть произведение определённой величины напряжения на равное нулю значение тока. Следовательно, мощность потерь равна нулю.

Выходит, что в ключевом режиме, в идеальном случае, мощность потерь транзистора равна нулю.

    Что называют усилительным каскадом?

Соединение нескольких усилителей, предназначенное для увеличения параметров электрического сигнала. Подразделяют на каскады предварительного усиления и выходные каскады. Первые предназначены для повышения уровня сигнала по напряжению, а выходные каскады – для получения требуемых тока или мощности сигнала.

Добрый день, друзья!

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит . Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением , без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных и низковольтных импульсных стабилизаторах на м компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate).

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме . Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной .

Как проверить диод с помощью цифрового тестера, описано в соответствующей . Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Кстати, купить полевые транзисторы можно .

В полупроводниковой электронике наряду с биполярными транзисторами находят применение транзисторы, управляемые электрическим полем , одной из положительных особенностей которых является большое входное сопротивление (составляет 1-10 МОм и более). Такие транзисторы получили название полевых (униполярных ).

Устройство и принцип действия

Полевыми транзисторами называют полупроводниковые приборы, в которых создание электрического тока обусловлено перемещением носителей заряда одного знака под действием продольного электрического поля , а управление выходным током основано на модуляции сопротивления полупроводникового материала поперечным электрическим полем .

Принцип работы полевых транзисторов может быть основан:

На зависимости сопротивления полупроводника от сечения его проводящей области (чем меньше сечение - тем меньше ток; реализован в полевых транзисторах с управляющим р-п- переходом);

На зависимости проводимости полупроводника от концентрации основных носителей (реализован в полевых транзисторах с изолированным затвором структуры металл-диэлектрик-полупроводник (МДП-транзисторы)).

Полевой транзистор с управляющим р-п- переходом (ПТУП) представляет собой тонкую полупроводниковую пластину с одним р-п -переходом и с невыпрямляющими контактами по краям. Электропроводность материала пластины может быть п -типа или р -типа. В качестве примера рассмотрим транзистор, у которого основная пластина состоит из полупроводника n -типа (рисунок 1.32).

Рисунок 1.32 - Структура полевого транзистора с управляющим р-п -переходом

Основными областями в структуре полевого транзистора с управляющим р-п- переходомявляются:

Область истока - область, от которой начинают перемещение носители зарядов;

Область стока - область, к которой перемещаются носители;

Область затвора - область, с помощью которой осуществляется управление потоком носителей;

Область канала - область, через которую перемещаются носители.

Выводы от соответствующих областей транзистора имеют аналогичные названия: исток (И), сток (С) и затвор (3) (рисунок 1.32).

На рисунке 1.33 показаны условные графические обозначения полевых транзисторов с управляющим р-п- переходом: с каналом п -типа (рисунок 1.33, а ) и каналом р -типа (рисунок 1.33, б ).

а б

Рисунок 1.33 - УГО полевых транзисторов с управляющим р-п -переходом

Рассмотрим принцип функционирования ПТУП. Источники напряжения подключают к транзистору таким образом, чтобы между электродами стока и истока протекал электрический ток, а напряжение, приложенное к затвору, смещало электронно-дырочный переход в обратном направлении .


На рисунке 1.34 показан способ подключения источников напряжения к выводам ПТУП с каналом п -типа.

Рисунок 1.34 - Подключение источников напряжения к выводам ПТУП

Под действием напряжения источника Е СИ электроны будут перемещаться от истока к стоку, обеспечивая во внешней цепи ток стока I C .

Концентрации носителей зарядов в полупроводниковом материале канала и затвора выбраны таким образом, что при подаче обратносмещающего напряжения между затвором и истоком р-п -переход будет расширяться в область канала. Это приводит к уменьшению площади поперечного сечения проводящей части канала и, следовательно, к уменьшению тока стока I C .

Сопротивление области, расположенной под электрическим переходом, в общем случае зависит от напряжения на затворе . Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала (и, соответственно, к уменьшению тока, протекающего в канале).

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения .

Напряжение между затвором и истоком, при котором канал полностью перекрывается и ток стока достигает минимального значения (I C » 0), называют напряжением отсечки (U отс ) полевого транзистора.

В отличие от ПТУП, у которых затвор имеет электрический контакт с каналом, в полевых транзисторах с изолированным затвором (ПТИЗ) затвор представляет собой тонкую пленку металла, изолированного от полупроводника. В зависимости от вида изоляции различают МДП- и МОП-транзисторы (соответственно, металл - диэлектрик - полупроводник и металл - оксид - полупроводник, например двуокись кремния SiO 2).

В исходном состоянии канал ПТИЗ может быть обеднен носителями зарядов или обогащен ими. В зависимости от этого различают два типа полевых транзисторов с изолированным затвором: МДП-транзисторы со встроенным каналом (рисунок 1.35, а ) (канал создается при изготовлении) и МДП-транзисторы с индуцированным каналом (рисунок 1.35, б ) (канал возникает под действием напряжения, приложенного к управляющим электродам). В ПТИЗ имеется дополнительный вывод от кристалла, на котором выполнен прибор (рисунок 1.35), называемого подложкой.

а б

Рисунок 1.35 - Устройство полевых транзисторов с изолированным затвором

В ПТИЗ электроды стока и истока располагаются по обе стороны от затвора и имеют непосредственный контакт с полупроводниковым каналом.

Канал называется встроенным , если он изначально обогащен носителями заряда. В этом случае управляющее электрическое поле будет приводить к обеднению канала носителями зарядов. Если канал изначально обеднен носителями электрических зарядов, то он называется индуцированным . При этом управляющее электрическое поле (между затвором и истоком) будет обогащать канал носителями электрических зарядов (то есть, повышать его проводимость).

Проводимость канала может быть электронной или дырочной . Если канал имеет электронную проводимость, то он называется п -каналом. Каналы с дырочной проводимостью называются р -каналами. В результате этого различают четыре типа полевых транзисторов с изолированным затвором : с каналом п - либо р -типов, каждый из которых может иметь индуцированный или встроенный канал. Условные графические обозначения названных типов полевых транзисторов представлены на рисунке 1.36.

Управляющее напряжение в ПТИЗ можно подавать как между затвором и подложкой , так и независимо на подложку и затвор . Рассмотрим в качестве примера принцип управления током в полевых транзисторах, структуры которых показаны на рисунке 1.35.

Рисунок 1.36 - УГО полевых транзисторов с изолированным затвором

Если на затвор подать положительное напряжение, то под влиянием образующегося электрического поля у поверхности полупроводника (рисунок 1.35, б ) появляется канал п -типа за счет отталкивания дырок от поверхности в глубь полупроводника. В транзисторе со встроенным каналом (рисунок 1.35, а ) происходит расширение уже имеющегося канала при подаче положительного напряжения или сужение - при подаче отрицательного. Изменение управляющего напряжения меняет ширину канала и, соответственно, сопротивление и ток транзистора .

Существенным преимуществом ПТИЗ перед ПТУП является , достигающее значений 10 10 - 10 14 Ом (у транзисторов с управляющим р-п -переходом - 10 7 - 10 9 Ом).

Важным преимуществом полевых транзисторов перед биполярными является малое падение напряжения на них при коммутации слабых сигналов.

Кроме этого следует выделить такие достоинства, как:

- высокое входное сопротивление ;

- малые шумы ;

- простота изготовления ;

- отсутствие в открытом состоянии остаточного напряжения между истоком и стоком открытого транзистора .

Вольт-амперные характеристики и основные параметры полевых транзисторов

Из рассмотренного ранее следует, что всего существует шесть типов полевых транзисторов. Их типовые передаточные характеристики приведены на рисунке 1.37. Пользуясь этими характеристиками, можно установить полярность управляющего напряжения, направление тока в канале и диапазон изменения управляющего напряжения. Из всех приведенных разновидностей транзисторов в настоящее время не выпускаются только ПТИЗ со встроенным каналом р -типа.

Рисунок 1.37 - Передаточные характеристики полевых транзисторов

Рассмотрим некоторые особенности этих характеристик. Все характеристики полевых транзисторов с каналом п -типа расположены в верхней половине графика и, следовательно, имеют положительный ток, что соответствует положительному напряжению на стоке. Наоборот, все характеристики приборов с каналом р -типа расположены в нижней половине графика и, следовательно, имеют отрицательное значение тока и отрицательное напряжение на стоке. Характеристики ПТУП при нулевом напряжении на затворе имеют максимальное значение тока, которое называется начальным I С нач . При увеличении запирающего напряжения ток стока уменьшается и при напряжении отсечки U отс становится близким к нулю.

Характеристики ПТИЗ с индуцированным каналом при нулевом напряжении на затворе имеют нулевой ток. Появление тока стока в таких транзисторах происходит при напряжении на затворе больше порогового значения U пор . Увеличение напряжения на затворе приводит к увеличению тока стока.

Характеристики ПТИЗ со встроенным каналом при нулевом напряжении на затворе имеют начальное значение тока I С. нач . Такие транзисторы могут работать как в режиме обогащения, так и в режиме обеднения. При увеличении напряжения на затворе канал обогащается и ток стока растет, а при уменьшении напряжения на затворе канал обедняется и ток стока снижается.

На рисунке 1.38 приведены выходные вольт-амперные характеристики ПТУП с каналом n -типа. Характеристики других типов транзисторов имеют аналогичный вид, но отличаются напряжением на затворе и полярностью приложенных напряжений.

Рисунок 1.38 - Выходные ВАХ ПТУП

На ВАХ полевого транзистора можно выделить две области: линейную и насыщения .

В линейной области ВАХ вплоть до точки перегиба представляют собой прямые линии, наклон которых зависит от напряжения на затворе. В области насыщения вольт-амперные характеристики идут практически горизонтально, что позволяет говорить о независимости тока стока от напряжения на стоке. В этой области выходные характеристики полевых транзисторов всех типов сходны с характеристиками электровакуумных пентодов. Особенности этих характеристик обуславливают применение полевых транзисторов. В линейной области полевой транзистор используется как сопротивление , управляемое напряжением на затворе , а в области насыщения - как усилительный элемент .

Максимальное напряжение, прикладываемое между стоком и истоком полевого транзистора, для каждого типа транзисторов различно. Но в общем случае, как показано на рисунке 1.39, при превышении некоторого значения U СИ проб резко возрастает ток стока, что может привести к выходу из строя транзистора в результате пробоя.

Рисунок 1.39 - Семейство выходных ВАХ полевого транзистора

К основным параметрам полевых транзисторов относятся:

Крутизна стокозатворной характеристики

Типовые значения: S = 0,1-500 мА/В;

Крутизна характеристики по подложке

Типовые значения: S п = 0,1-1 мА/В;

Начальный ток стока I С нач - ток стока при нулевом напряжении U ЗИ .

У транзисторов с управляющим р -п -переходом I C нач = 0,2-600 мА, со встроенным каналом - I С нач = 0,1-100 мА, с индуцированным каналом - I С нач = 0,01-0,5 мкА;

Напряжение отсечки U ЗИ отс (типовые значения U ЗИ отс = 0,2-10 В);

Сопротивление сток - исток в открытом состоянии R СИ отк (типовые значения R СИ отк = 2-300 Ом);

Остаточный ток стока I С ост - ток стока при напряжении U ЗИ отс (I С ост = 0,001-10 мА);

Максимальная частота усиления f p - частота, на которой коэффициент усиления по мощности равен единице (типовые значения f p - десятки - сотни МГц).