Что такое растровая графика и где её применение? Растровая графика – основные понятия. Программные средства растровой графики Системы представления цвета

Растровая графика, общие сведения

Компьютерное растровое изображение представляется в виде прямоугольной матрицы, каждая ячейка которой представлена цветной точкой.

Основой растрового представления графики является пиксель (точка) с указанием ее цвета. При описании, например, красного эллипса на белом фоне необходимо указать цвет каждой точки эллипса и фона. Изображение представляется в виде большого количества точек - чем их больше, тем визуально качественнее изображение и больше размер файла. Т.е. одна и даже картинка может быть представлена с лучшим или худшим качеством в соответствии с количеством точек на единицу длины - разрешением (обычно, точек на дюйм - dpi или пикселей на дюйм - ppi).

Растровые изображения напоминают лист клетчатой бумаги, на котором любая клетка закрашена либо черным, либо белым цветом, образуя в совокупности рисунок. Пиксел - основной элемент растровых изображений. Именно из таких элементов состоит растровое изображение, т.е. растровая графика описывает изображения с использованием цветных точек (пиксели) , расположенных на сетке.

При редактировании растровой графики Вы редактируете пиксели , а не линии . Растровая графика зависит от разрешения, поскольку информация, описывающая изображение, прикреплена к сетке определенного размера. При редактировании растровой графики, качество ее представления может измениться. В частности, изменение размеров растровой графики может привести к «разлохмачиванию» краев изображения, поскольку пиксели будут перераспределяться на сетке. Вывод растровой графики на устройства с более низким разрешением, чем разрешение самого изображения, понизит его качество.

Кроме того, качество характеризуется еще и количеством цветов и оттенков, которые может принимать каждая точка изображения. Чем большим количеством оттенков характеризуется изображения, тем большее количество разрядов требуется для их описания. Красный может быть цветом номер 001, а может и - 00000001. Таким образом, чем качественнее изображение, тем больше размер файла.

Растровое представление обычно используют для изображений фотографического типа с большим количеством деталей или оттенков. К сожалению, масштабирование таких картинок в любую сторону обычно ухудшает качество. При уменьшении количества точек теряются мелкие детали и деформируются надписи (правда, это может быть не так заметно при уменьшении визуальных размеров самой картинки - т.е. сохранении разрешения). Добавление пикселей приводит к ухудшению резкости и яркости изображения, т.к. новым точкам приходится давать оттенки, средние между двумя и более граничащими цветами.

С помощью растровой графики можно отразить и передать всю гамму оттенков и тонких эффектов, присущих реальному изображению. Растровое изображение ближе к фотографии, оно позволяет более точно воспроизводить основные характеристики фотографии: освещенность, прозрачность и глубину резкости.

Чаще всего растровые изображения получают с помощью сканирования фотографий и других изображений, с помощью цифровой фотокамеры или путем "захвата" кадра видеосъемки. Растровые изображения можно получить и непосредственно в программах растровой или векторной графики путем преобразовании векторных изображений.

Распространены форматы .tif, .gif, .jpg, .png, .bmp, .pcx и др.

Растровые представления изображений

Пиксел - основной элемент растровых изображений. Именно из таких элементов состоит растровое изображение.

Цифровое изображение - это совокупность пикселей. Каждый пиксел растрового изображения характеризуется координатами x и y и яркостью V(x,y) (для черно-белых изображений). Поскольку пикселы имеют дискретный характер, то их координаты - это дискретные величины, обычно целые или рациональные числа. В случае цветного изображения, каждый пиксел характеризуется координатами x и y, и тремя яркостями: яркостью красного, яркостью синего и яркостью зеленого цветов (V R , V B , V G). Комбинируя данные три цвета можно получить большое количество различных оттенков.

Заметим, что в случае, если хотя бы одна из характеристик изображения не является числом, то изображение относится к виду аналоговых . Примерами аналоговых изображений могут служить галограмы и фотографии. Для работы с такими изображениями существуют специальные методы, в частности, оптические преобразования. В ряде случаев аналоговые изображения переводят в цифровой вид. Эту задачу осуществляет Image Processing.

Цвет любого пиксела растрового изображения запоминается с помощью комбинации битов. Чем больше битов для этого используется, тем больше оттенков цветов можно получить. Под градацию яркости обычно отводится 1 байт (256 градаций), причем 0 - черный цвет, а 255 - белый (максимальная интенсивность). В случае цветного изображения отводится по байту на градации яркостей всех трех цветов. Возможно кодирование градаций яркости другим количеством битов (4 или 12), но человеческий глаз способен различать только 8 бит градаций на каждый цвет, хотя специальная аппаратура может потребовать и более точную передачу цветов. Цвета, описываемые 24 битами, обеспечивают более 16 миллионов доступных цветов и их часто называют естественными цветами.

В цветовых палитрах каждый пиксел описан кодом. Поддерживается связь этого кода с таблицей цветов, состоящей из 256 ячеек. Разрядность каждой ячейки- 24 разряда. На выходе каждой ячейки по 8 разрядов для красного, зеленого и синего цветов.

Цветовое пространство, образуемое интенсивностями красного, зеленого и синего, представляют в виде цветового куба

Вершины куба A, B, C являются максимальными интенсивностями зеленого, синего и красного соответственно, а треугольник, которые они образуют, называется треугольником Паскаля. Периметр этого треугольника соответствует максимально насыщенным цветам. Цвет максимальной насыщенности содержит всегда только две компоненты. На отрезке OD находятся оттенки серого, причем тока O соответствует черному, а точка D белому цвету.

Виды растров

Растр - это порядок расположения точек (растровых элементов). На рис. 2. изображен растр, элементами которого являются квадраты, такой растр называется прямоугольным , именно такие растры наиболее часто используются.

Хотя возможно использование в качестве растрового элемента фигуры другой формы: треугольника, шестиугольника; соответствующего следующим требованиям:

− все фигуры должны быть одинаковые;

− должны полностью покрывать плоскость без наезжания и дырок.

Так в качестве растрового элемента возможно использование равностороннего треугольника, правильного шестиугольника (гексаэдра) Можно строить растры, используя неправильные многоугольники, но практический смысл в подобных растрах отсутствует.

Рассмотрим способы построения линий в прямоугольном и гексагональном растре.

В прямоугольном растре построение линии осуществляется двумя способами:

1) Результат - восьмисвязная линия. Соседние пиксели линии могут находится в одном из восьми возможных положениях. Недостаток - слишком тонкая линия при угле 45°.

2) Результат - четырехсвязная линия. Соседние пиксели линии могут находится в одном из четырех возможных положениях. Недостаток - избыточно толстая линия при угле 45°.

В гексагональном растре линии шестисвязные (см. рис. 6) такие линии более стабильны по ширине, т.е. дисперсия ширины линии меньше, чем в квадратном растре.

Одним из способов оценки растра является передача по каналу связи кодированного, с учетом используемого растра, изображения с последующим восстановлением и визуальным анализом достигнутого качества. Экспериментально и математически доказано, что гексагональный растр лучше, т.к. обеспечивает наименьшее отклонение от оригинала. Но разница не велика.

Моделирование гексагонального растра. Возможно построение гексагонального растра на основе квадратного. Для этого гексаугольник представляют в виде прямоугольника.

Факторы, влияющие на количество памяти, занимаемой растровым изображением

Файлы растровой графики занимают большое количество памяти компьютера. Некоторые картинки занимают большой объем памяти из-за большого количества пикселов, любой из которых занимает некоторую часть памяти. Наибольшее влияние на количество памяти занимаемой растровым изображением оказывают три факта:

− размер изображения;

− битовая глубина цвета;

− формат файла, используемого для хранения изображения.

Существует прямая зависимость размера файла растрового изображения. Чем больше в изображении пикселов, тем больше размер файла. Разрешающая способность изображения на величину файла никак не влияет. Разрешающая способность оказывает эффект на размер файла только при сканировании или редактировании изображений.

Связь между битовой глубиной и размером файла непосредственная. Чем больше битов используется в пикселе, тем больше будет файл. Размер файла растровой графики сильно зависит от формата выбранного для хранения изображения. При прочих равных условиях, таких как размеры изображения и битовая глубина существенное значение имеет схема сжатия изображения. Например, BMP файл имеет, как правило, большие размеры, по сравнению с файлами PCX и GIF, которые в свою очередь больше JPEG файла.

Многие файлы изображений обладают собственными схемами сжатия, также могут содержать дополнительные данные краткого описания изображения для предварительного просмотра.

Достоинства и недостатки растровой графики

Достоинства:

Растровая графика эффективно представляет реальные образы. Реальный мир состоит из миллиардов мельчайших объектов и человеческий глаз как раз приспособлен для восприятия огромного набора дискретных элементов, образующих предметы. На своем высшем уровне качества - изображение выглядят вполне реально подобно тому, как выглядят фотографии в сравнении с рисунками. Это верно только для очень детализированных изображений, обычно получаемых сканированием фотографий. Помимо естественного вида растровые изображения имеют другие преимущества. Устройства вывода, такие как лазерные принтеры, для создания изображений используют наборы точек. Растровые изображения могут быть очень легко распечатаны на таких принтерах, потому что компьютерам легко управлять устройством вывода для представления отдельных пикселов с помощью точек.

В компьютерной графике с понятием разрешения обычно происходит больше всего путаницы, поскольку приходится иметь дело сразу с несколькими свойствами разных объектов. Следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске. Разрешение экрана -- это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы. Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком.

Разрешение принтера -- это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения -- это свойство самого изображения. Оно тоже измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения -- его физическим размером. Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает.

Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет. Нетрудно пересчитать размер изображения из пикселей в единицы длины или наоборот, если известно разрешение изображения.

Таблица 1. Связь между линейным размером иллюстрации и размером файла

Таблица 2. Связь между размером иллюстрации (в пикселях) и размером отпечатка (в мм)


Цветовое разрешение и цветовые модели

При работе с цветом используются понятия цветовое разрешение (его еще называют глубиной цвета) и цветовая модель. Цветовое разрешение определяет метод кодирования цветовой информации, и от него зависит то, сколько цветов на экране может отображаться одновременно. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пикселя. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65 536 различных цветом. Этот режим называется High Color. Если для кодирования цвета используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов. Этот режим называется True Color.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями: RGB, CMYK и HSB. Цветовая модель RGB наиболее проста для понимания и очевидна. В этой модели работают мониторы и бытовые телевизоры. Любой цвет считается состоящим из трех основных компонентов: красного (Red), зеленого (Green) и синего (Blue). Эти цвета называются основными. Считается также, что при наложении одного компонента на другой яркость суммарного цвета увеличивается. Совмещение трех компонентов дает нейтральный цвет (серый), который при большой яркости стремится к белому цвету. Это соответствует тому, что мы наблюдаем на экране монитора, поэтому данную модель применяют всегда, когда готовится изображение, предназначенное для воспроизведения на экране. Если изображение проходит компьютерную обработку в графическом редакторе, то его тоже следует представить в этой модели. В графических редакторах имеются средства для преобразования изображений из одной цветовой модели в другую.

Метод получения нового оттенка суммированием яркостей составляющих компонентов называют аддитивным методом. Он применяется всюду, где цветное изображение рассматривается в проходящем свете ("на просвет"): в мониторах, слайд-проекторах и т. п.

Нетрудно догадаться, что чем меньше яркость, тем темнее оттенок. Поэтому в аддитивной модели центральная точка, имеющая нулевые значения компонентов (0, 0, 0), имеет черный цвет (отсутствие свечения экрана монитора). Белому цвету соответствуют максимальные значения составляющих (255, 255, 255). Модель RGB является аддитивной, а ее компоненты -- красный, зеленый и синий -- называют основными цветами.

Цветовую модель CMYK используют для подготовки не экранных, а печатных изображений. Они отличаются тем, что их видят не в проходящем, а в отраженном свете. Чем больше краски положено на бумагу, тем больше света она поглощает и меньше отражает. Совмещение трех основных красок поглощает почти весь падающий свет, и со стороны изображение выглядит почти черным. В отличие от модели RGB увеличение количества краски приводит не к увеличению визуальной яркости, а наоборот к ее уменьшению. Поэтому для подготовки печатных изображений используется не аддитивная (суммирующая) модель, а субтрактивная (вычитающая) модель. Цветовыми компонентами этой модели являются не основные цвета, а те, которые получаются в результате вычитания основных цветов из белого:

* голубой (cyan)=белый?красный=зеленый+синий;

* пурпурный (magenta)=белый?зеленый=красный+синий;

* желтый (yellow)=белый?синий=красный+зеленый.

Эти три цвета называются дополнительными, потому что они дополняют основные цвета до белого.

Существенную трудность в полиграфии представляет черный цвет. Теоретически его можно получить совмещением трех основных или дополнительных красок, но на практике результат оказывается негодным. Поэтому в цветовую модель CMYK добавлен четвертый компонент -- черный. Ему эта система обязана буквой К в названии (blacK).

В типографиях цветные изображения печатают в несколько приемов. Накладывая на бумагу по очереди голубой, пурпурный, желтый и черный отпечатки, получают полноцветную иллюстрацию. Поэтому готовое изображение, полученное на компьютере, перед печатью разделяют на четыре составляющих одноцветных изображения. Этот процесс называется цветоделением. Современные графические редакторы имеют средства для выполнения этой операции. В отличие от модели RGB, центральная точка имеет белый цвет (отсутствие красителей на белой бумаге). К трем цветовым координатам добавлена четвертая -- интенсивность черной краски. Ось черного цвета выглядит обособленной, но в этом есть смысл: при сложении цветных составляющих с черным цветом все равно получится черный цвет. Сложение цветов в модели CMYK каждый может проверить, взяв в руки голубой, розовый и желтый карандаши или фломастеры. Смесь голубого и желтого на бумаге дает зеленый цвет, розового с желтым -- красный и т. д. При смешении всех трех цветов получается неопределенный темный цвет. Поэтому в этой модели черный цвет и понадобился дополнительно.

Некоторые графические редакторы позволяют работать с цветовой моделью HSB. Если модель RGB наиболее удобна для компьютера, а модель CMYK -- для типографий, то модель HSB наиболее удобна для человека. Она проста и интуитивно понятна. В модели HSB тоже три компонента: оттенок цвета (Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness). Регулируя эти три компонента, можно получить столь же много произвольных цветов, как и при работе с другими моделями.

Цветовая модель HSB удобна для применения в тех графических редакторах, которые ориентированы не на обработку готовых изображений, а на их создание своими руками. Существуют такие программы, которые позволяют имитировать различные инструменты художника (кисти, перья, фломастеры, карандаши), материалы красок (акварель, гуашь, масло, тушь, уголь, пастель) и материалы полотна (холст, картон, рисовая бумага и пр.). Создавая собственное художественное произведение, удобно работать в модели HSB, а по окончании работы его можно преобразовать в модель RGB или CMYK, в зависимости от того, будет ли оно использоваться как экранная или печатная иллюстрация.

Цветовая палитра -- это таблица данных, в которой хранится информация о том, каким кодом закодирован тот или иной цвет. Эта таблица создается и хранится вместе с графическим файлом. Самый удобный для компьютера способ кодирования цвета -- 24-разрядный, True Color. В этом режиме на кодирование каждой цветовой составляющей R (красной), G (зеленой) и В (синей) отводится по одному байту (8 битов). Яркость каждой составляющей выражается числом от 0 до 255, и любой цвет из 16,5 миллионов компьютер может воспроизвести по трем кодам. В этом случае цветовая палитра не нужна, поскольку в трех байтах и так достаточно информации о цвете конкретного пикселя.

Существенно сложнее обстоит дело, когда изображение имеет только 256 цветов, кодируемых одним байтом. В этом случае каждый цветовой оттенок представлен одним числом, причем это число выражает не цвет пикселя, а индекс цвета (его номер). Сам же цвет разыскивается по этому номеру в сопроводительной цветовой палитре, приложенной к файлу. Такие цветовые палитры еще называют индексными палитрами. Разные изображения могут иметь разные цветовые палитры. Например, в одном изображении зеленый цвет может кодироваться индексом 64, а в другом изображении этот индекс может быть отдан розовому цвету. Если воспроизвести изображение с "чужой" цветовой палитрой, то зеленая елка на экране может оказаться розовой. В тех случаях, когда цвет изображения закодирован двумя байтами (режим High Color), на экране возможно изображение 65 тысяч цветов. Разумеется, это не все возможные цвета, а лишь одна двести пятьдесят шестая доля общего непрерывного спектра красок, доступного в режиме True Color. В таком изображении каждый двухбайтный код тоже выражает какой-то цвет из общего спектра. Но в данном случае нельзя приложить к файлу индексную палитру, в которой было бы записано, какой код какому цвету соответствует, поскольку в этой таблице было бы 65 тысяч записей и ее размер составил бы сотни тысяч байтов. Вряд ли есть смысл прикладывать к файлу таблицу, которая может быть по размеру больше самого файла. В этом случае используют понятие фиксированной палитры. Ее не надо прикладывать к файлу, поскольку в любом графическом файле, имеющем шестнадцатиразрядное кодирование цвета, один и тот же код всегда выражает один и тот же цвет.

Компьютерное растровое изображение представляется в виде прямоугольной матрицы, каждая ячейка которой - цветная точка. Т.е. основным элементом растрового изображения является точка . Если изображение экранное, то эта точка называется пикселем .

При создании растровых изображений необходимо задавать разрешение и размеры изображения.

В зависимости от того, какое графическое разрешение экрана используется операционной системой, на экране могут размещаться изображения, имеющие 640х480, 800х600, 1024х768 и более пикселей.

Разрешение изображения измеряется в точках на дюйм (dots per inch - dpi) (1 дюйм = 25,4 мм). Полиграфическая печать полноцветного изображения требует разрешения не менее 200-300 dpi.

С помощью растровой графики можно отразить и передать всю гамму оттенков и тонких эффектов, присущих реальному изображению. Растровое изображение ближе к фотографии, оно позволяет более точно воспроизводить основные характеристики фотографии: освещенность, прозрачность и глубину резкости.

Чаще всего растровые изображения получают с помощью сканирования фотографий и других изображений, с помощью цифровой фотокамеры или путем "захвата" кадра видеосъемки.

Основным недостатком растровых изображений является невозможность их увеличения для рассмотрения деталей. При увеличении изображения точки становятся крупнее, но дополнительная информация не появляется. Этот эффект называется пикселизацией (см. рисунок 19) .

Средства работы с растровой графикой

К числу простейших растровых редакторов относятся PaintBrush , Paint , Painter , которые позволяют непосредственно рисовать простейшие растровые изображения.

Основной класс растровых графических редакторов предназначен для обработки готовых растровых изображений с целью улучшения их качества и создания собственных изображений из уже имеющихся. К таким редакторам относятся такие мощные программы, как Adobe Photoshop , Corel PhotoPaint , Gimp и другие.

Основные растровые форматы

BMP (Windows Device Independent Bitmap) - самый простой растровый формат является форматом Windows, он поддерживается всеми графическими редакторами, работающими под ее управлением. В BMP данные о цвете хранятся только в модели RGB, поддерживаются как индексированные цвета (до 256 цветов), так и полноцветные изображения. Благодаря примитивнейшему алгоритму записи изображения, при обработке файлов формата BMP очень мало расходуется системных ресурсов, поэтому этот формат часто используется для хранения логотипов, экранных заставок, иконок и прочих элементов графического оформления программ.

GIF (Graphics Interchange Format ) - является одним из самых популярных форматов изображений, размещаемых на веб-страницах. Отличительной его особенностью является использование режима индексированных цветов (не более 256), что ограничивает область применения формата изображениями, имеющими резкие цветовые переходы. Небольшие размеры файлов изображений обусловлены применением алгоритма сжатия без потерь качества, благодаря чему изображения в этом формате наиболее удобны для пересылки по каналам связи глобальной сети. В GIF реализован эффект прозрачности и возможности хранить в одном файле несколько картинок с указанием времени показа каждой, что используется для создания анимированных изображений .

PNG (Portable Network Graphics) - формат PNG, являющийся плодом трудов сообщества независимых программистов, появился на свет как ответная реакция на переход популярнейшего формата GIF в разряд коммерческих продуктов. Этот формат,в отличие от GIF сжимает растровые изображения не только по горизонтали, но и по вертикали, что обеспечивает более высокую степень сжатия. Как недостаток формата часто упоминается то, что он не дает возможности создавать анимационные ролики. Зато формат PNG позволяет создавать изображения с 256 уровнями прозрачности что, безусловно, выделяет его на фоне всех существующих в данный момент форматов. Так как формат создавался для Интернета, в его заголовке не предназначено место для дополнительных параметров типа разрешения, поэтому для хранения изображений, подлежащих печати, PNG плохо подходит, для этих целей лучше подойдет PSD или TIFF.

JPEG (Joint Photographic Experts Group) - самый популярный формат для хранения фотографических изображений, является общепризнанным стандартом. JPEG может хранить только 24-битовые полноцветные изображения. Хотя JPEG отлично сжимает фотографии, но это сжатие происходит с потерями и портит качество, тем не менее, он может быть легко настроен на минимальные, практически незаметные для человеческого глаза, потери. Однако не стоит использовать формат JPEG для хранения изображений, подлежащих последующей обработке, так как при каждом сохранении документа в этом формате процесс ухудшения качества изображения носит лавинообразный характер. Наиболее целесообразно будет корректировать изображение в каком-нибудь другом подходящем формате, например TIFF, и лишь по завершению всех работ окончательная версия может быть сохранена в JPEG. Формат JPEG не поддерживает анимацию или прозрачный цвет, и пригоден в подавляющем большинстве случаев только для публикации полноцветных изображений, типа фотографических, в Интернете.

TIFF (Tag Image File Format). Как универсальный формат для хранения растровых изображений, TIFF достаточно широко используется, в первую очередь, в издательских системах, требующих изображения наилучшего качества. Кстати, возможность записи изображений в формате TIFF является одним из признаков высокого класса современных цифровых фотокамер. В этом формате поддерживаются такие чисто профессиональные возможности, как обтравочные контуры, альфа-каналы, возможность сохранять несколько копий изображения с разным разрешением и даже включать в файл слои. Благодаря своей совместимости с большинством профессионального ПО для обработки изображений, формат TIFF очень удобен при переносе изображений между компьютерами различных типов.

PSD (Adobe Photoshop) - является стандартным форматом пакета Adobe Photoshop и отличается от большинства обычных растровых форматов возможностью хранения слоев (layers). Он содержит много дополнительных переменных (не уступает TIFF по их количеству) и сжимает изображения иногда даже сильнее, чем PNG (в тех случаях, когда размеры файла измеряются не в килобайтах, а в десятках или даже сотнях мегабайт). Файлы PSD свободно читаются большинством популярных просмотрщиков.

  • познакомить учащихся с основными типами компьютерной графики
  • познакомить учащихся с понятиями разрешения изображения и глубины цвета
  • научить учащихся выбирать подходящее разрешение и глубину цвета в зависимости от целей создания изображения
  • дать сведения об основных цветовых моделях

Существует разделение на несколько типов компьютерной графики. Мы рассмотрим подробно два из них:

  • векторные изображения
  • растровые (или пиксельные, или битовые)

Векторные графические изображения создаются из объектов, которые описываются с помощью так называемых параметрических уравнений. Объекты состоят из контура и заливки (в частном случае - с отсутствующими (прозрачными)). Поскольку элементы таких изображений описываются формулами, векторные изображения не теряют качества при масштабировании и имеют небольшой объем файла.

Векторные изображения применяют при создании чертежей, графиков, схем, карт; с помощью векторной графики создаются открытки, обложки книг и журналов, даже рисуется мультипликация .

Такие изображения создаются в специальных программах - векторных редакторах , например Adobe Illustrator, Adobe Flash , Corel Draw , Autodesk Autocad и других. Поскольку векторные изображения описываются уравнениями, мы не можем увидеть их в "настоящем" виде.

Уравнения ничего не значат, если нельзя увидеть их результат, поэтому векторные изображения мы видим в виде растровых изображений на экране или на печатной странице (т. е. состоящими из мелких элементов - точек).

Создание векторных изображений можно сравнить со сборкой фигур из конструктора Lego или с созданием аппликаций.

Битовые графические изображения, называемые также растровыми, "обязаны своим существованием "мелким дискретным элементам, образующим распознаваемое изображение.


Рис. 1.2.

Ярким примером изображений из дискретных элементов является мозаика, возникшая как элемент украшения зданий (рис. 1.2.). Для нее используются камни (смальта, плитки) самых разных форм и размеров. Художник-мозаист выбирает камень, исходя из требуемого цвета, размера и содержания. Творческая манера выкладывания мозаики у каждого художника своя.

В компьютерном изображении нет смысла выбирать особые элементы, а достаточно "навязать" принудительную дискретизацию на элементы простой геометрической формы - квадратной.

Ярким образцом растрового изображения является цифровая фотография.

Как и векторные , растровые изображения создаются и редактируются в программах - растровых редакторах, таких, как Adobe Photoshop, Corel Photopaint, Microsoft Paint и других.

Рассмотрим основные понятия пиксельной (растровой) графики подробнее.

Пиксел (pixel) , являющийся сокращением от picture element (элемент картинки) - наименьший единый элемент растровой графики. (В живой речи слово употребляется в двух вариантах - " пиксел " и "пиксель". В литературе чаще встречается " пиксел ".)

Пикселы чаще всего имеют квадратную форму (за исключением некоторых телевизионных стандартов). Размер пиксела является относительной величиной. Чтобы охарактеризовать место и размер пиксела в растровом изображении, применяют понятие разрешения изображения.

Для определения понятия разрешения необходимо выбрать единицу длины; чаще всего используют британскую - дюйм ( inch ), равный 2,54 cм. Можно рассматривать и метрическую систему, но эта система не прижилась среди специалистов, поэтому фактически не используется.

Число пикселов на единицу длины называется разрешением изображения ( image resolution ), и его количественной единицей считается ppi (pixels per inch - пикселы на дюйм).

Изображение с большим разрешением содержит больше пикселов (и меньшего размера), чем у изображения с меньшим разрешением (и большего размера).

Для лучшего усвоения понятия разрешения можно предложить учащимся небольшую задачу:

  • 5 клеточек в тетради по длине приблизительно равны одному дюйму; отметьте полоску из пяти клеток и закрасьте одну клеточку. Если размер пиксела будет размером с эту клеточку, какое будет разрешение у этого изображения? (5ppi)
  • Еще раз отметьте такую же полоску и закрасьте квадратик в четверть клеточки. Как изменилось разрешение? Каково оно? Как изменился размер пиксела? (10 ppi , разрешение изменилось в 2 раза, размер пиксела - в 4 раза)

Разрешение показывает, сколько пикселов содержится в одном линейном дюйме, и, если известны размеры изображения, можно точно сказать, сколько пикселов в нем содержится. Например, если изображение имеет размер 1 дюйм на 1 дюйм, а разрешение изображения равно 8 ppi , можно заключить, что все изображение содержит 64 пиксела. Если разрешение - 16

Компьютерная графика незаметно, но прочно вошла в нашу обыденную жизнь. Она уже давно перестала быть уделом избранных. Каждый раз, перенося фотографии с цифрового фотоаппарата в компьютер или просто нажимая на кнопку «сохранить», чтобы добавить в коллекцию понравившуюся картинку, вы работаете с компьютерной графикой.

Стоит ли тратить время на теорию?

Знание основ того, каким образом функционирует метод работы с изображениями, сослужит вам хорошую службу. Расширения после названия файла перестанут быть для вас некой волшебной абракадаброй, а начнут исправно поставлять важную информацию. Вы сможете сознательно решить, какие изображения лучше сжать, чтобы не засорять место на жестком диске, и грамотно выберете, каким именно способом это можно сделать.

Редактирование собственных фотографий также перейдет из состояния «метода научного тыка» на совершенно новый уровень. А у некоторых невинная забава с изображениями на экране постепенно переходила и в достаточно прибыльную работу.

Разница между растровой и векторной графикой

На данный момент в компьютерной среде в основном используется векторная и растровая графика. Они кардинально отличаются друг от друга способом кодирования информации.

Ни для кого не секрет, что все данные в компьютере записаны с помощью двоичного кода. Таким образом, любая информация, будь то текст, картинка или звук, определенным образом шифруется. Для того чтобы сохранить векторное изображение, оно разбивается на элементарные геометрические фигуры, которые, в свою очередь, описываются простейшими математическими формулами. Таким образом, к примеру, буква «и» для графического редактора будет описана двумя параллельными отрезками заданной длины, которые соединены линией под углом 45 градусов.

Растровое же изображение разбивается по другому принципу. Компьютер дробит картинку на множество точек, которые называют пикселями, и запоминает цвет и расположение каждого пикселя.

Преимущества и недостатки

Если вы работаете с векторным рисунком, то теоретически можете его увеличивать до бесконечности. Причем на качестве изображения это ни в коей мере не отразится. Так как параметры заданы в виде геометрических формул, компьютер просто перерабатывает их и заполняет все пустоты нужными цветами. В результате вы имеете четкое изображение.

Недостатки растровой графики кроются именно в том, что при сжатии (которое в подавляющем большинстве случаев имеет место при сохранении файла) может существенно пострадать качество. Появляется так называемая зернистость. Однако именно растровая графика используется в сложных изображениях. В векторных рисунках можно создать только очень простые картинки. Поэтому сейчас мы сосредоточимся на том, где применяется растровая графика.

Области применения

Растровые изображения идеально передают содержание отсканированных объектов. С их помощью можно работать с полутонами и плавным переходом цвета. Фотографии, снятые цифровым фотоаппаратом, также используют исключительно растровые изображения. Также этот формат служит незаменимым инструментом в области веб-дизайна.

Форматы растровой графики

Вспомним, что информация об изображении в нашем случае кодируется с помощью точек. Единицей измерения в этой кодировке служит пиксел. Это - наименьшая точка, которую невозможно поделить ни в отношении размера, ни в отношении цвета.

Количество этих точек на заданную единицу площади называется разрешением. На изображении с большим разрешением (большим количеством отдельных точек) мы увидим четкий рисунок и плавные переходы цвета. Однако в случае, когда разрешение небольшое, качество картинки может сильно страдать (ведь компьютер просто выводит на экран имеющееся в его памяти количество точек и растягивает их до запрашиваемого размера).

Можно условно сравнить с языком. Для того чтобы передать одну и ту же информацию на разных языках, потребуется разное количество букв, звуков и слов. Также в большинстве случаев будет различаться и грамматическая конструкция. А «переводчиками» с этих «языков» в наших компьютерах служат специализированные программы, которые либо «читают» его, либо конвертируют в нужный формат.

Основным отличием между форматами остается способ сохранения информации. Рассмотрим наиболее распространенные.

BMP

Это один из первопроходцев. Когда он разрабатывался, растровая графика находилась, можно сказать, у самых истоков своего существования. Создатели особо не заморачивались и запрограммировали BMP на последовательное запоминание каждого пиксела. Фактически, это просто копирование, но с некоторой потерей цвета, так как в распоряжении формата BMP всего 256 цветов.

TIFF

Достаточно громоздкий в масштабах цифровых хранилищ, однако просто незаменимый при выводе информации на печать. В отличие от BMP он поддерживает возможность информации. Причем для этого можно использовать не один, а несколько разных алгоритмов. Однако если вы не работаете в отрасли полиграфической печати или хотя бы какого-то издательства, серьезная мощность этого формата вам особо не понадобится.

GIF

Это уже более приближенный к реальному использованию (для неспециалистов) формат. Особенно знаменит он возможностью использования анимационной последовательности. Компьютерная графика, выполненная в этом формате, позволяет также создавать полупрозрачные изображения. Однако плавные переходы цветов вам передать не удастся. Чаще всего применение растровой графики в формате GIF можно увидеть в веб-дизайне. Оно совместимо со всеми платформами и к тому же достаточно компактно сжимает информацию, что является немаловажным фактором в скорости открытия интернет-страниц.

JPEG

Наиболее популярный формат. И это вполне заслуженно. Любые графические редакторы растровой графики без сомнения поддерживают этот формат. Он был разработан с конкретной целью - избавиться от ограничений, налагаемых сжатием GIF-файлов. в этом формате достигает коэффициента в 100 единиц. Это большой показатель. Однако у такого сжатия все-таки есть свои недостатки - происходит некоторая потеря данных, и не исключено, что сохраненное изображение станет несколько размытым. Так как этот формат попросту откидывает информацию, которую считает незначительной, всегда существует риск искажения некоторых деталей.

JPEG 2000

Улучшенный вариант ранней версии. Информация об изображении сжимается еще более компактно, а потерь в качестве стало значительно меньше. Чаще всего этот формат используется для хранения фотографий на жестком диске компьютера и на просторах интернета. Однако следует помнить, что если вы будете неоднократно сохранять одно и то же изображение в форматах JPEG или JPEG 2000, оно каждый раз будет терять частички информации, и в конечном итоге вы получите значительно искаженную, по сравнению с оригиналом, картинку.

PNG

Значительно улучшенный по качеству собрат формата GIF. Сохранив буквально все преимущества своего предшественника, он лишен его недостатков. Используется как для так и в дизайне веб-страниц. Кроме того, PNG, в отличие от GIF, официально находится в свободном доступе.

PSD

Растровая графика в формате PSD обрабатывается исключительно в программе Adobe Photoshop. Это внутренний пакет этой программы. Он поддерживает работу со слоями редактируемого изображения.

CDR

Это также внутренний пакет для программы растровой графики Как правило, эта программа используется графическими дизайнерами для создания изображений с нуля. Но бесспорно поддерживается и функция редактирования.

Редакторы растровой графики

А теперь немного о программах, которые работают с редактированием изображений.

Наиболее популярной среди пользователей на данный момент является программа Adobe Photoshop, в простонародье именуемая просто "Фотошопом". Эта разработка, по сути, монополизировала работу с растровыми изображениями в среде специалистов по дизайну. Однако программа эта платная и стоит она не так мало. Поэтому начали появляться разработки других компаний. Некоторые из них уже получили достаточно широкое применение.

Что до самого "Фотошопа", то это никак не отразилось на его популярности. программы достаточно простой, а в разнообразных видеокурсах и самоучителях недостатка не наблюдается.

В "Фотошопе" вы можете не только сделать коллаж из фотографий или добавить на изображение встроенные эффекты. Простейшие функции этой программы можно освоить очень быстро, и это откроет дверь для безудержного полета фантазии. Вы сможете исправлять недостатки внешности, корректировать цветовую гамму, изменять фон и еще много-много всего.

Графический редактор GIMP

Что до бесплатных программ, то тут можно смело рекомендовать GIMP. Этот графический редактор может легко потеснить раскрученный "Фотошоп". Он превосходно справляется со всеми задачами, необходимыми для редактирования растровых изображений, и имеет некоторые начальные функции для работы с векторной графикой.

Программа GIMP позволяет делать фотографии более насыщенными и живыми, она легко убирает лишние элементы с изображения и может использоваться для подготовки профессиональных дизайнерских проектов. Компьютерная графика, создаваемая с помощью этой программы, выглядит естественной и органично вписывается в общую картину.

Графический редактор Corel DRAW

Было бы неправильно обойти стороной продукцию компании Corel. В Corel DRAW вы сможете с легкостью работать как с растровыми, так и с векторными изображениями. Возможности этого инструмента столь многочисленны, что изучение программы Corel DRAW входит в обязательный курс подготовки графических дизайнеров в колледжах.

Эта программа также платная, и арсенал ее продукции пополняется с завидной регулярностью. Но, несмотря на широчайшие возможности, которые этот графический редактор предоставляет пользователю, его интуитивно понятный интерфейс превращает рабочий процесс в удовольствие.

Бесплатные графические редакторы

И еще буквально пару слов об альтернативных программах для редактирования изображений. В большинстве случаев они прекрасно справляются с запросами среднестатистического пользователя, а места и ресурсов на вашем компьютере забирают в разы меньше. Да и работать с ними по большому счету легче, так как вы не будете перегружены необходимостью выбора среди всевозможных функций, предназначение которых остается до конца не ясным.

Если вы любите необычные и по большей мере шуточные фотографии, попробуйте воспользоваться программой Funny Photo Maker. Там вы найдете множество оригинальных рамок и забавных визуальных эффектов.

Для более серьезных работ подойдет Picasa. Этот редактор заточен под использование в компьютерных сетях. Его новые возможности позволят вам еще проще оформлять свои страницы в социальных сетях. А встроенные эффекты для редактирования не разочаруют даже искушенного специалиста.

Еще одна интересная программа - это Paint.NET. Она очень похожа по своим функциям и возможностям на Adobe Photoshop. А используемые в Paint.NET инструменты могут составить серьезную конкуренцию упомянутому коммерческому аналогу.